Few layer graphene-polypropylene nanocomposites: the role of flake diameter

被引:38
作者
Valles, Cristina [1 ]
Abdelkader, Amr M. [1 ,2 ]
Young, Robert J. [1 ]
Kinloch, Ian A. [1 ]
机构
[1] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
INTERFACIAL STRESS TRANSFER; MECHANICAL-PROPERTIES; CRYSTALLIZATION; OXIDE;
D O I
10.1039/c4fd00112e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene shows excellent potential as a structural reinforcement in polymer nanocomposites due to its exceptional mechanical properties. We have shown previously that graphene composites can be analysed using conventional composite theory with the graphene flakes acting as short fillers which have a critical length of similar to 3 mu m which is required for good reinforcement. Herein, polypropylene (PP) nanocomposites were prepared using electrochemically-exfoliated few layer graphene (FLG) with two different flake diameters (5 mu m and 20 mu m). The crystallization temperature and degree of crystallinity of the PP were found to increase with the loading of FLG, which suggests that the flakes acted as crystallisation nucleation sites. Mechanical testing showed that the 5 gm flakes behaved as short fillers and reinforced the PP matrix poorly. The modulus of the 20 gm flake composites, however, increased linearly with loading up to 20 wt%, without any of the detrimental aggregation effects seen in other graphene systems. The mechanical data were compared with our previous work on other graphene composite systems and the apparent need to balance the degree of functionalization to improve matrix compatibility whilst not encouraging aggregation is discussed.
引用
收藏
页码:379 / 390
页数:12
相关论文
共 33 条
[1]   Continuous Electrochemical Exfoliation of Micrometer-Sized Graphene Using Synergistic Ion Intercalations and Organic Solvents [J].
Abdelkader, Amr M. ;
Kinloch, Ian A. ;
Dryfe, Robert A. W. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) :1632-1639
[2]   High-performance nanotube-reinforced plastics: Understanding the mechanism of strength increase [J].
Coleman, JN ;
Cadek, M ;
Blake, R ;
Nicolosi, V ;
Ryan, KP ;
Belton, C ;
Fonseca, A ;
Nagy, JB ;
Gun'ko, YK ;
Blau, WJ .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (08) :791-798
[3]   Graphene-Based Polymer Composites and Their Applications [J].
Das, Tapan K. ;
Prusty, Smita .
POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (04) :319-331
[4]   Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing [J].
El Achaby, Mounir ;
Arrakhiz, Fatima-Ezzahra ;
Vaudreuil, Sebastien ;
el Kacem Qaiss, Abou ;
Bousmina, Mostapha ;
Fassi-Fehri, Omar .
POLYMER COMPOSITES, 2012, 33 (05) :733-744
[5]   Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites [J].
Ferreira, C. I. ;
Dal Castel, C. ;
Oviedo, M. A. S. ;
Mauler, R. S. .
THERMOCHIMICA ACTA, 2013, 553 :40-48
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[8]   Optimizing the Reinforcement of Polymer-Based Nanocomposites by Graphene [J].
Gong, Lei ;
Young, Robert J. ;
Kinloch, Ian A. ;
Riaz, Ibtsam ;
Jalil, Rashid ;
Novoselov, Kostya S. .
ACS NANO, 2012, 6 (03) :2086-2095
[9]   Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite [J].
Gong, Lei ;
Kinloch, Ian A. ;
Young, Robert J. ;
Riaz, Ibtsam ;
Jalil, Rashid ;
Novoselov, Konstantin S. .
ADVANCED MATERIALS, 2010, 22 (24) :2694-+
[10]   Graphene-based composites [J].
Huang, Xiao ;
Qi, Xiaoying ;
Boey, Freddy ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) :666-686