Real-Time Optimization for Power Management Systems of a Battery/Supercapacitor Hybrid Energy Storage System in Electric Vehicles

被引:133
作者
Choi, Mid-Eum [1 ]
Lee, Jun-Sik [1 ]
Seo, Seung-Woo [1 ,2 ,3 ,4 ,5 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 151744, South Korea
[2] Seoul Natl Univ, Seoul 151744, South Korea
[3] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA
[4] Seoul Natl Univ, Inst New Media & Commun, Sch Elect Engn, Seoul 151744, South Korea
[5] Seoul Natl Univ, Informat Secur Ctr, Seoul 151744, South Korea
基金
新加坡国家研究基金会;
关键词
Battery; convex optimization; hybrid energy storage; power management; real-time control; supercapacitor (SC); FUEL-CELL; BATTERY; LIFE;
D O I
10.1109/TVT.2014.2305593
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Batteries mounted on electric vehicles (EVs) are often damaged by high peak power and rapid charging/discharging cycles, which are originated from repetitive acceleration/deceleration of vehicles particularly in urban situations. To reduce battery damage, the battery/supercapacitor (SC) hybrid energy storage system (HESS) has been considered as a solution because the SC can act as a buffer against large magnitudes and rapid fluctuations in power. While the traditional purpose of employing the HESS in EVs is to minimize the magnitude/variation of battery power or power loss, the previous approaches proposed for controlling the HESS have some drawbacks; they neither consider these objectives simultaneously nor reflect real-time load dynamics for computing the SC reference voltage. In this paper, we present a power control framework consisting of two stages: one for computing the SC reference voltage and another for optimizing the power flowing through the HESS. In the presented framework, we propose a methodology for calculating the SC reference voltage considering the real-time load dynamics without given future operation profiles. In addition, we formulate the HESS power control problem as a convex optimization problem that minimizes the magnitude/fluctuation of battery power and power loss at the same time. The optimization problem is formulated so that it can be repeatedly solved by general solvers in polynomial time. Simulation results carried out on MATLAB show that the magnitude/variation of battery power and power loss can be concurrently reduced in real time by the proposed framework.
引用
收藏
页码:3600 / 3611
页数:12
相关论文
共 35 条
[1]  
[Anonymous], 2003, IEEE BOL POW TECH C
[2]  
[Anonymous], 2012, P 2012 IEEE INT ELEC, DOI DOI 10.1109/IEVC.2012.6183166
[3]   ADVISOR-based model of a battery and an ultra-capacitor energy source for hybrid electric vehicles [J].
Baisden, AC ;
Emadi, A .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2004, 53 (01) :199-205
[4]   An Analytical Optimization Method for Improved Fuel Cell-Battery-Ultracapacitor Powertrain [J].
Bauman, Jennifer ;
Kazerani, Mehrdad .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (07) :3186-3197
[5]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[6]   Achieving a high pulse power system through engineering the battery-capacitor combination [J].
Brandhorst, HW ;
Chen, Z .
SIXTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, 2001, :153-156
[7]  
Burress T. A., 2011, ORNLTM2010253 EN EFF
[8]   Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles [J].
Camara, Mamadou Baeilo ;
Gualous, Hamid ;
Gustin, Frederic ;
Berthon, Alain .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2008, 57 (05) :2721-2735
[9]   DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications-Polynomial Control Strategy [J].
Camara, Mamadou Bailo ;
Gualous, Hamid ;
Gustin, Frederic ;
Berthon, Alain ;
Dakyo, Brayima .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (02) :587-597
[10]   A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles [J].
Cao, Jian ;
Emadi, Ali .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (01) :122-132