Imputation strategies for missing data in environmental time series for an unlucky situation

被引:1
|
作者
Mendola, D [1 ]
机构
[1] Univ Palermo, Dipartimento Sci Stat & Matemat Silvio Vianelli, I-90128 Palermo, Italy
关键词
D O I
10.1007/3-540-26981-9_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
After a detailed review of the main specific solutions for treatment of missing data in environmental time series, this paper deals with the unlucky situation in which, in an hourly series, missing data immediately follow an absolutely anomalous period, for which we do not have any similar period to use for imputation. A tentative multivariate and multiple imputation is put forward and evaluated; it is based on the possibility, typical of environmental time series, to resort to correlations or physical laws that characterize relationships between air pollutants.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 50 条
  • [41] A new method of missing data imputation applied to time series of PM10 concentration
    Nogarotto, Danilo Covaes
    Rissi, Nathalia Morgana
    Pozza, Simone Andrea
    REVISTA TECNOLOGIA E SOCIEDADE, 2019, 15 (37): : 275 - 296
  • [42] Practical Strategies for Extreme Missing Data Imputation in Dementia Diagnosis
    McCombe, Niamh
    Liu, Shuo
    Ding, Xuemei
    Prasad, Girijesh
    Bucholc, Magda
    Finn, David P.
    Todd, Stephen
    McClean, Paula L.
    Wong-Lin, Kongfatt
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (02) : 818 - 827
  • [43] Missing data imputation in a transformer district based on time series imagingencoding and a generative adversarial network
    Liu K.
    Zhou F.
    Zhou H.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (24): : 129 - 136
  • [44] Long Gaps Missing IoT Sensors Time Series Data Imputation: A Bayesian Gaussian Approach
    Ahmed, Hassan M.
    Abdulrazak, Bessam
    Blanchet, F. Guillaume
    Aloulou, Hamdi
    Mokhtari, Mounir
    IEEE ACCESS, 2022, 10 : 116107 - 116119
  • [45] IMPUTATION OF MISSING DATA
    Lunt, M.
    ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 49 - 49
  • [46] Attention-Based Multi-modal Missing Value Imputation for Time Series Data with High Missing Rate
    Ahmed, Khandakar Tanvir
    Baul, Sudipto
    Fu, Yanjie
    Zhang, Wei
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 469 - 477
  • [47] Missing Value Imputation of Wireless Sensor Data for Environmental Monitoring
    Decorte, Thomas
    Mortier, Steven
    Lembrechts, Jonas J.
    Meysman, Filip J. R.
    Latre, Steven
    Mannens, Erik
    Verdonck, Tim
    SENSORS, 2024, 24 (08)
  • [48] Missing Data Imputation for Real Time-series Data in a Steel Industry using Generative Adversarial Networks
    Sarda, Kisan
    Yerudkar, Amol
    Del Vecchio, Carmen
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [49] Imputation Strategies in Time Series Based on Language Models
    Jacobsen, Michel
    Tropmann-Frick, Marina
    Datenbank-Spektrum, 2024, 24 (03) : 197 - 207
  • [50] Missing data imputation and classification of small sample missing time series data based on gradient penalized adversarial multi-task learning
    Liu, Jing-Jing
    Yao, Jie-Peng
    Liu, Jin-Hang
    Wang, Zhong-Yi
    Huang, Lan
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2528 - 2550