An Interactive Circular Visual Analytic Tool for Visualization of Web Data

被引:0
作者
Dubois, Patrick M. J. [1 ]
Han, Zhao [1 ,2 ]
Jiang, Fan [1 ]
Leung, Carson K. [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
[2] Univ Massachusetts, Dept Comp Sci, Lowell, MA USA
来源
2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016) | 2016年
基金
加拿大自然科学与工程研究理事会;
关键词
Visual analytics; visual data mining; data mining; web mining; association rule mining; frequent patterns; human-machine interaction; pattern discovery; ASSOCIATION RULES;
D O I
10.1109/WI.2016.126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual analytics on frequent patterns aims to help users to (i) analyze the data so as to discover implicit, previously unknown and potentially useful information in the form of collections of frequently co-occurring items and/or events and to (ii) visually represent the discovered knowledge so as to gain insight about the data. In this paper, we propose an interactive visual analytics tool (icVAT) for frequent pattern mining from the web. It uses an orientation free, circular layout to show frequent patterns. Moreover, we provide users with interactive feature to explicitly show connections among related frequent patterns. Experimental results show the effectiveness of our icVAT, especially in collaborative environments, for visual analytics of frequent patterns from web data.
引用
收藏
页码:709 / 712
页数:4
相关论文
共 16 条
  • [1] Ankerst M., ACM KIDD 1999, P392
  • [2] Interactive visual exploration of association rules with rule-focusing methodology
    Blanchard, Julien
    Guillet, Fabrice
    Briand, Henri
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 13 (01) : 43 - 75
  • [3] Bothorel G., ISVC 2014, P396
  • [4] Chen HC, 1998, J AM SOC INFORM SCI, V49, P582, DOI 10.1002/(SICI)1097-4571(19980515)49:7<582::AID-ASI2>3.0.CO
  • [5] 2-X
  • [6] Hassan M.R., PAKDD 2010, P107
  • [7] Jiang F., IEEE WIC ACM WI 2016
  • [8] Ontology visualization methods - A survey
    Katifori, Akrivi
    Halatsis, Constantin
    Lepouras, George
    Vassilakis, Costas
    Giannopoulou, Eugenia
    [J]. ACM COMPUTING SURVEYS, 2007, 39 (04)
  • [9] Keim D.A., IEEE INFO VIS 2005 P
  • [10] Visualization techniques for mining large databases: A comparison
    Keim, DA
    Kriegel, HP
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) : 923 - 938