Dynamics of a new Lorenz-like chaotic system

被引:104
作者
Liu, Yongjian [1 ,2 ]
Yang, Qigui [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] Yulin Normal Univ, Dept Math & Computat Sci, Yulin 537000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic system; Center manifold theorem; Degenerate pitchfork; Homoclinic orbit; Heteroclinic orbit; HOPF-BIFURCATION ANALYSIS; CHENS SYSTEM; CANONICAL FORM; LU SYSTEM; SYNCHRONIZATION; ATTRACTOR; STABILITY; EQUATION;
D O I
10.1016/j.nonrwa.2009.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work is devoted to giving new insights into a new Lorenz-like chaotic system. The local dynamical entities, such as the number of equilibria, the stability of the hyperbolic equilibria and the stability of the non-hyperbolic equilibrium obtained by using the center manifold theorem, the pitchfork bifurcation and the degenerate pitchfork bifurcation, Flopf bifurcations and the local manifold character, are all analyzed when the parameters are varied in the space of parameters. The existence of homoclinic and heteroclinic orbits of the system is also rigorously studied. More exactly, for b >= 2a > 0 and c > 0, we prove that the system has no homoclinic orbit but has two and only two heteroclinic orbits. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2563 / 2572
页数:10
相关论文
共 29 条
[1]   Breaking projective chaos synchronization secure communication using filtering and generalized synchronization [J].
Alvarez, G ;
Li, SJ ;
Montoya, F ;
Pastor, G ;
Romera, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :775-783
[2]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]  
Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071
[5]   Stability and Hopf bifurcation analysis of a new system [J].
Huang, Kuifei ;
Yang, Qigui .
CHAOS SOLITONS & FRACTALS, 2009, 39 (02) :567-578
[6]  
Kuznetsov Y.A., 2004, ELEMENTS APPL BIFURC, DOI DOI 10.15388/NAMC.2020.25.16663
[7]   A note on Hopf bifurcation in Chen's system [J].
Li, CP ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (06) :1609-1615
[8]   On stability and bifurcation of Chen's system [J].
Li, TC ;
Chen, GR ;
Tang, Y .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1269-1282
[9]   On homoclinic and heteroclinic orbits of Chen's system [J].
Li, Tiecheng ;
Chen, Guoting ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10) :3035-3041
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO