Phantom maps in the stable module category

被引:24
作者
Gnacadja, GP [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
Phantom map; Stable module category;
D O I
10.1006/jabr.1997.7303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study phantom maps in the stable module category StMod(kG), where k is a field and G is a finite group. In this article we almost exclusively deal with maps out of countably generated modules. We show that the space Ph stabilized phantom maps M --> N has an expression as a (lim)under left arrow(1) space which allows some control on its vanishing. Then we present a situation where all maps are phantom and need not be trivial. We provide explicit details for such a particular situation. Finally we construct a universal phantom map. We use it to show that the composite of two phantom maps is trivial and to characterize the modules with no nontrivial outbound phantom maps. (C) 1998 Academic Press.
引用
收藏
页码:686 / 702
页数:17
相关论文
共 20 条
[1]  
Anderson F. W., 1973, GRADUATE TEXTS MATH, V13
[2]  
[Anonymous], 1995, OXFORD MATH MONOGR
[3]  
Benson, 1991, CAMBRIDGE STUDIES AD, V30
[4]   DIAGRAMMATIC METHODS FOR MODULAR-REPRESENTATIONS AND COHOMOLOGY [J].
BENSON, DJ ;
CARLSON, JF .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (1-2) :53-121
[5]  
Bousfield A.K., 1972, LECT NOTES MATH, V304
[6]  
Carlson J. F., 1996, LECT MATH ETH ZURICH
[7]   Phantom maps and homology theories [J].
Christensen, JD ;
Strickland, NP .
TOPOLOGY, 1998, 37 (02) :339-364
[8]  
CHRISTENSEN JD, 1997, IN PRESS ADV MATH
[9]   DEPTH AND EQUIVARIANT CO-HOMOLOGY [J].
DUFLOT, J .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) :627-637
[10]   Mittag-Leffler condition and the vanishing of (lim)(1)-under-left-arrow [J].
Emmanouil, I .
TOPOLOGY, 1996, 35 (01) :267-271