Nanofluidic charged-coupled devices for controlled DNA transport and separation

被引:4
作者
Nouri, Reza [1 ]
Guan, Weihua [1 ,2 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
nanofluidics; charge-coupled device; molecular transport; molecular separation; FIELD-EFFECT CONTROL; MOLECULAR-TRANSPORT; FLOW; ION; NANOCHANNEL; FABRICATION; PRINCIPLES; MODULATION;
D O I
10.1088/1361-6528/ac027f
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Controlled molecular transport and separation is of significant importance in various applications. In this work, we presented a novel concept of nanofluidic molecular charge-coupled device (CCD) for controlled DNA transport and separation. By leveraging the unique field-effect coupling in nanofluidic systems, the nanofluidic molecular CCD aims to store charged biomolecules such as DNAs in discrete regions in nanochannels and transfer and separate these biomolecules as a charge packet in a bucket brigade fashion. We developed a quantitative model to capture the impact of nanochannel surface charge, gating voltage and frequency, molecule diffusivity, and gating electrode geometry on the transport and separation efficiency. We studied the synergistic effects of these factors to guide the device design and optimize the DNA transport and separation in a nanofluidic CCD. The findings in this study provided insight into the rational design and implementation of the nanofluidic molecular CCD.
引用
收藏
页数:8
相关论文
共 42 条
  • [31] Field effect nanofluidics
    Prakash, Shaurya
    Conlisk, A. T.
    [J]. LAB ON A CHIP, 2016, 16 (20) : 3855 - 3865
  • [32] Molecular transport through capillaries made with atomic-scale precision
    Radha, B.
    Esfandiar, A.
    Wang, F. C.
    Rooney, A. P.
    Gopinadhan, K.
    Keerthi, A.
    Mishchenko, A.
    Janardanan, A.
    Blake, P.
    Fumagalli, L.
    Lozada-Hidalgo, M.
    Garaj, S.
    Haigh, S. J.
    Grigorieva, I. V.
    Wu, H. A.
    Geim, A. K.
    [J]. NATURE, 2016, 538 (7624) : 222 - +
  • [33] Field-effect flow control for microfabricated fluidic networks
    Schasfoort, RBM
    Schlautmann, S
    Hendrikse, L
    van den Berg, A
    [J]. SCIENCE, 1999, 286 (5441) : 942 - 945
  • [34] Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor
    Singh, Kunwar Pal
    Guo, Chunlei
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (24) : 15701 - 15708
  • [35] Sparreboom W, 2009, NAT NANOTECHNOL, V4, P713, DOI [10.1038/NNANO.2009.332, 10.1038/nnano.2009.332]
  • [36] Nanochannel fabrication for chemical sensors
    Stern, MB
    Geis, MW
    Curtin, JE
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06): : 2887 - 2891
  • [37] Logic gates based on ion transistors
    Tybrandt, Klas
    Forchheimer, Robert
    Berggren, Magnus
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [38] Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format
    Viefhues, Martina
    Regtmeier, Jan
    Anselmetti, Dario
    [J]. ANALYST, 2013, 138 (01) : 186 - 196
  • [39] Ballistic energy conversion: physical modeling and optical characterization
    Xie, Yanbo
    Bos, Diederik
    van der Meulen, Mark-Jan
    Versluis, Michel
    van den Berg, Albert
    Eijkel, Jan C. T.
    [J]. NANO ENERGY, 2016, 30 : 252 - 259
  • [40] Interaction between Surface Charge-Modified Gold Nanoparticles and Phospholipid Membranes
    Xing, Xueqing
    Ma, Wanshun
    Zhao, Xiaoyi
    Wang, Jiayi
    Yao, Lei
    Jiang, Xingyu
    Wu, Zhonghua
    [J]. LANGMUIR, 2018, 34 (42) : 12583 - 12589