Topological states in superlattices of HgTe class of materials for engineering three-dimensional flat bands

被引:14
|
作者
Islam, Rajibul [1 ]
Ghosh, Barun [2 ,3 ]
Cuono, Giuseppe [1 ]
Lau, Alexander [1 ]
Brzezicki, Wojciech [1 ,4 ]
Bansil, Arun [2 ]
Agarwal, Amit [3 ]
Singh, Bahadur [5 ]
Dietl, Tomasz [1 ,6 ]
Autieri, Carmine [1 ,7 ]
机构
[1] Polish Acad Sci, Inst Phys, Int Res Ctr MagTop, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[3] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[4] Jagiellonian Univ, Inst Theoret Phys, Ulica S Lojasiewicza 11, PL-30348 Krakow, Poland
[5] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Mumbai 400005, Maharashtra, India
[6] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[7] UOS Salerno, Consiglio Nazl Ric CNR SPIN, IT-84084 Salerno, Italy
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
关键词
CRYSTALLINE INSULATOR; DISCOVERY; SEMIMETAL; SCHEMES;
D O I
10.1103/PhysRevResearch.4.023114
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In search of materials with three-dimensional flat band dispersions, using ab initio computations we investigate how topological phases evolve as a function of hydrostatic pressure and uniaxial strain in two types of superlattices: HgTe/CdTe and HgTe/HgSe. In short-period HgTe/CdTe superlattices, our analysis unveils the presence of isoenergetic nodal lines, which could host strain-induced three-dimensional flat bands at the Fermi level without requiring doping, when fabricated, for instance, as core-shell nanowires. In contrast, HgTe/HgSe short-period superlattices are found to harbor a rich phase diagram with a plethora of topological phases. Notably, the unstrained superlattice realizes an ideal Weyl semimetal with Weyl points situated at the Fermi level. A small-gap topological insulator with multiple band inversions can be obtained by tuning the volume: under compressive uniaxial strain, the material transitions sequentially into a Dirac semimetal to a nodal-line semimetal, and finally into a topological insulator with a single band inversion.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Engineering Three-Dimensional Moire Flat Bands
    Xian, Lede
    Fischer, Ammon
    Claassen, Martin
    Zhang, Jin
    Rubio, Angel
    Kennes, Dante M.
    NANO LETTERS, 2021, 21 (18) : 7519 - 7526
  • [2] Induced Superconductivity in the Three-Dimensional Topological Insulator HgTe
    Maier, Luis
    Oostinga, Jeroen B.
    Knott, Daniel
    Bruene, Christoph
    Virtanen, Pauli
    Tkachov, Grigory
    Hankiewicz, Ewelina M.
    Gould, Charles
    Buhmann, Hartmut
    Molenkamp, Laurens W.
    PHYSICAL REVIEW LETTERS, 2012, 109 (18)
  • [3] Thermoelectric Transport in a Three-Dimensional HgTe Topological Insulator
    Gusev, Gennady M.
    Kvon, Ze D.
    Levin, Alexander D.
    Mikhailov, Nikolay N.
    NANOMATERIALS, 2021, 11 (12)
  • [4] Engineering three dimensional moiré flat bands
    Xian, Lede
    Fischer, Ammon
    Claassen, Martin
    Zhang, Jin
    Rubio, Angel
    Kennes, Dante M.
    arXiv, 2020,
  • [5] Appearance of flat surface bands in three-dimensional topological insulators in a ferromagnetic exchange field
    Paananen, Tomi
    Gerber, Henning
    Goette, Matthias
    Dahm, Thomas
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [6] Three-dimensional topological insulator based on a strained HgTe film
    Kozlov, D. A.
    Kvon, Z. D.
    Savchenko, M. L.
    Weiss, D.
    Mikhailov, N. N.
    Dvoretskii, S. A.
    LOW TEMPERATURE PHYSICS, 2015, 41 (02) : 82 - 89
  • [7] Quantum capacitance of a three-dimensional topological insulator based on HgTe
    Kozlov, D. A.
    Bauer, D.
    Ziegler, J.
    Fischer, R.
    Savchenko, M. L.
    Kvon, Z. D.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    Weiss, D.
    LOW TEMPERATURE PHYSICS, 2017, 43 (04) : 430 - 436
  • [8] Screening two-dimensional materials with topological flat bands
    Liu, Hang
    Meng, Sheng
    Liu, Feng
    PHYSICAL REVIEW MATERIALS, 2021, 5 (08)
  • [9] Transport spectroscopy of induced superconductivity in the three-dimensional topological insulator HgTe
    Wiedenmann, Jonas
    Liebhaber, Eva
    Kuebert, Johannes
    Bocquillon, Erwann
    Burset, Pablo
    Ames, Christopher
    Buhmann, Hartmut
    Klapwijk, Teun M.
    Molenkamp, Laurens W.
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [10] Band structure of a HgTe-based three-dimensional topological insulator
    Gospodaric, J.
    Dziom, V
    Shuvaev, A.
    Dobretsova, A. A.
    Mikhailov, N. N.
    Kvon, Z. D.
    Novik, E. G.
    Pimenov, A.
    PHYSICAL REVIEW B, 2020, 102 (11)