Sorption enhanced reforming of methane combined with an iron oxide chemical loop for the production of hydrogen with CO2 capture: Conceptual design and operation strategy

被引:23
作者
Fernandez, Jose R. [1 ]
Carlos Abanades, J. [1 ]
机构
[1] CSIC, INCAR, Spanish Res Council, C Francisco Pintado Fe 26, Oviedo 33011, Spain
关键词
Hydrogen production; CO2; capture; Sorption enhanced reforming; Calcium looping; Chemical looping combustion; Fluidized bed; FLUIDIZED-BED COMBUSTION; NATURAL-GAS; H-2; PRODUCTION; CARBON CAPTURE; CAO; PERFORMANCE; POWER; SEGREGATION; CALCINATION; PARTICLES;
D O I
10.1016/j.applthermaleng.2017.07.063
中图分类号
O414.1 [热力学];
学科分类号
摘要
High purity H-2 is produced by means of a sorption enhanced reforming (SER) process combined with an iron oxide chemical loop to regenerate the CO2-sorbent High-temperature Fe2O3 particles coming from an air reactor supply the heat required for the calcination of the CaCO3 formed during the SER stage, while generating a concentrated stream of CO2. Fe2O3 is reduced using the PSA off-gas and the calcination of CaCO3 can take place simultaneously in the same reduction reactor. The novel process operates in an arrangement of interconnected fluidized-bed reactors, which facilitates the introduction of a solids separation step between the CaO and reforming catalyst and the denser iron oxide particles. This operation largely reduces the energy demand in the reduction-calcination operation. A sensitivity analysis of the main operating parameters has been made to establish possible operational windows. A hydrogen production efficiency of 88.4% is achievable, while around 98% of the CO2 emissions can be captured in this highly integrated process scheme. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:811 / 822
页数:12
相关论文
共 54 条
[1]   Emerging CO2 capture systems [J].
Abanades, J. C. ;
Arias, B. ;
Lyngfelt, A. ;
Mattisson, T. ;
Wiley, D. E. ;
Li, H. ;
Ho, M. T. ;
Mangano, E. ;
Brandani, S. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 40 :126-166
[2]   Fluidized bed combustion systems integrating CO2 capture with CaO [J].
Abanades, JC ;
Anthony, EJ ;
Wang, JS ;
Oakey, JE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (08) :2861-2866
[3]   The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 [J].
Abanades, JC .
CHEMICAL ENGINEERING JOURNAL, 2002, 90 (03) :303-306
[4]   Progress in Chemical-Looping Combustion and Reforming technologies [J].
Adanez, Juan ;
Abad, Alberto ;
Garcia-Labiano, Francisco ;
Gayan, Pilar ;
de Diego, Luis F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (02) :215-282
[5]   Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture [J].
Antzara, A. ;
Heracleous, E. ;
Bukur, D. B. ;
Lemonidou, A. A. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 32 :115-128
[6]   Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot [J].
Arias, B. ;
Diego, M. E. ;
Abanades, J. C. ;
Lorenzo, M. ;
Diaz, L. ;
Martinez, D. ;
Alvarez, J. ;
Sanchez-Biezma, A. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 18 :237-245
[7]   CALCIUM OXIDE-CARBON DIOXIDE SYSTEM IN PRESSURE RANGE 1-300 ATMOSPHERES [J].
BAKER, EH .
JOURNAL OF THE CHEMICAL SOCIETY, 1962, (FEB) :464-&
[8]  
Barin I., 1995, Thermochemical Data of Pure Substances, Vthird
[9]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[10]  
BREF, 2010, BREF CEM LIM MAGN OX