Image reconstruction under multiplicative speckle noise using total variation

被引:32
作者
Afonso, M. [1 ]
Miguel Sanches, J. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Inst Syst & Robot, P-1699 Lisbon, Portugal
关键词
Despeckling; Multiplicative noise; Convex optimization; Total variation; ALGORITHM; MINIMIZATION; MODEL;
D O I
10.1016/j.neucom.2014.08.073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a method for reconstructing images or volumes from a partial set of observations, under the Rayleigh distributed multiplicative noise model, which is the appropriate algebraic model in ultrasound (US) imaging. The proposed method performs a variable splitting to introduce an auxiliary variable to serve as the argument of the total variation (TV) regularizer term. Applying the Augmented Lagrangian framework and using an iterative alternating minimization method lead to simpler problems involving TV minimization with a least squares term. The resulting Gauss Seidel scheme is an instance of the Alternating Direction Method of Multipliers (ADMM) method for which convergence is guaranteed. Experimental results show that the proposed method achieves a lower reconstruction error than existing methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:200 / 213
页数:14
相关论文
共 48 条
[21]   A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise [J].
Dong, Yiqiu ;
Zeng, Tieyong .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (03) :1598-1625
[22]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[23]   Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients [J].
Durand, Sylvain ;
Fadili, Jalal ;
Nikolova, Mila .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2010, 36 (03) :201-226
[24]   Three-dimensional ultrasound imaging [J].
Fenster, A ;
Downey, DB ;
Cardinal, HN .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (05) :R67-R99
[25]  
Gobbi D. G., 2002, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2002. 5th International Conference. Proceedings, Part II (Lecture Notes in Computer Science Vol.2489), P156
[26]   The Split Bregman Method for L1-Regularized Problems [J].
Goldstein, Tom ;
Osher, Stanley .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02) :323-343
[27]  
Hestenes M. R., 1969, Journal of Optimization Theory and Applications, V4, P303, DOI 10.1007/BF00927673
[28]  
Iusem AN., 1999, Investigacion Operativa, V8, P7
[29]   Sparse MRI: The application of compressed sensing for rapid MR imaging [J].
Lustig, Michael ;
Donoho, David ;
Pauly, John M. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) :1182-1195
[30]  
Masnou S, 1998, 1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 3, P259, DOI 10.1109/ICIP.1998.999016