BOUNDS OF THE PERIMETER OF AN ELLIPSE USING ARITHMETIC, GEOMETRIC AND HARMONIC MEANS

被引:13
作者
Wang, Miao-Kun [1 ]
Chu, Yu-Ming [1 ]
Jiang, Yue-Ping [2 ]
Qiu, Song-Liang [3 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[3] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2014年 / 17卷 / 01期
关键词
Perimeter of an ellipse; arithmetic mean; geometric mean; harmonic mean; Toader mean; ARC LENGTH; INEQUALITIES; INTEGRALS;
D O I
10.7153/mia-17-07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present several bounds for the perimeter of an ellipse in terms of arithmetic, geometric, and harmonic means, which improve some known results.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 20 条
  • [11] Carlson B., 1977, Special Functions of Applied Mathematics, V1st ed.
  • [12] Chandrupatla TR., 2010, The Mathematical Scientist, V35, P122
  • [13] The best bounds in Wallis' inequality
    Chen, CP
    Qi, F
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) : 397 - 401
  • [14] Optimal Lehmer Mean Bounds for the Toader Mean
    Chu, Yu-Ming
    Wang, Miao-Kun
    [J]. RESULTS IN MATHEMATICS, 2012, 61 (3-4) : 223 - 229
  • [15] Univalence and convexity properties for Gaussian hypergeometric functions
    Ponnusamy, S
    Vuorinen, M
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (01) : 327 - 353
  • [16] Qiu SL, 2005, HANDBOOK OF COMPLEX ANALYSIS: GEOMETRIC FUNCTION THEORY, VOL 2, P621
  • [17] Rainville E. D., 1960, Special Functions
  • [18] Some mean values related to the arithmetic-geometric mean
    Toader, G
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (02) : 358 - 368
  • [19] Vuorinen M., 1998, HYPERGEOMETRIC FUNCT, P119
  • [20] Whittaker ET., 1962, A Course of Modern Analysis, V4