Detection of Parkinson's disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques

被引:49
作者
Aljalal, Majid [1 ]
Aldosari, Saeed A. [1 ]
Molinas, Marta [2 ]
AlSharabi, Khalil [1 ]
Alturki, Fahd A. [1 ]
机构
[1] King Saud Univ, Dept Elect Engn, Riyadh, Saudi Arabia
[2] Norwegian Univ Sci & Technol, Dept Engn Cybernet, Trondheim, Norway
来源
SCIENTIFIC REPORTS | 2022年 / 12卷 / 01期
关键词
CLASSIFICATION; EPILEPSY; DIAGNOSIS;
D O I
10.1038/s41598-022-26644-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early detection of Parkinson's disease (PD) is very important in clinical diagnosis for preventing disease development. In this study, we present efficient discrete wavelet transform (DWT)-based methods for detecting PD from health control (HC) in two cases, namely, off-and on-medication. First, the EEG signals are preprocessed to remove major artifacts before being decomposed into several EEG sub-bands (approximate and details) using DWT. The features are then extracted from the wavelet packet-derived reconstructed signals using different entropy measures, namely, log energy entropy, Shannon entropy, threshold entropy, sure entropy, and norm entropy. Several machine learning techniques are investigated to classify the resulting PD/HC features. The effects of DWT coefficients and brain regions on classification accuracy are being investigated as well. Two public datasets are used to verify the proposed methods: the SanDiego dataset (31 subjects, 93 min) and the UNM dataset (54 subjects, 54 min). The results are promising and show that four entropy measures: log energy entropy, threshold entropy, sure entropy, and modified-Shannon entropy (TShEn) lead to high classification accuracy, indicating they are good biomarkers for PD detection. With the SanDiego dataset, the classification results of off-medication PD versus HC are 99.89, 99.87, and 99.91 for accuracy, sensitivity, and specificity, respectively, using the combination of DWT + TShEn and KNN classifier. Using the same combination, the results of on-medication PD versus HC are 94.21, 93.33, and 95%. With the UNM dataset, the obtained classification accuracy is around 99.5% in both cases of off-and on-medication PD using DWT + TShEn + SVM and DWT + ThEn + KNN, respectively. The results also demonstrate the importance of all DWT coefficients and that selecting a suitable small number of EEG channels from several brain regions could improve the classification accuracy.
引用
收藏
页数:19
相关论文
共 54 条
[1]   Automated EEG analysis of epilepsy: A review [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Swapna, G. ;
Martis, Roshan Joy ;
Suri, Jasjit S. .
KNOWLEDGE-BASED SYSTEMS, 2013, 45 :147-165
[2]   A recurrence plot-based approach for Parkinson's disease identification [J].
Afonso, Luis C. S. ;
Rosa, Gustavo H. ;
Pereira, Clayton R. ;
Weber, Silke A. T. ;
Hook, Christian ;
Albuquerque, Victor Hugo C. ;
Papa, Joao P. .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 94 :282-292
[3]   Parkinson's Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Techniques [J].
Aljalal, Majid ;
Aldosari, Saeed A. ;
AlSharabi, Khalil ;
Abdurraqeeb, Akram M. ;
Alturki, Fahd A. .
DIAGNOSTICS, 2022, 12 (05)
[4]   EEG Signal Processing for Alzheimer's Disorders Using Discrete Wavelet Transform and Machine Learning Approaches [J].
AlSharabi, Khalil ;
Bin Salamah, Yasser ;
Abdurraqeeb, Akram M. ;
Aljalal, Majid ;
Alturki, Fahd A. .
IEEE ACCESS, 2022, 10 :89781-89797
[5]  
Alturki F. A., 2019, 2019 2 INT C COMP, P1, DOI DOI 10.1109/cais.2019.8769492
[6]   Common Spatial Pattern Technique With EEG Signals for Diagnosis of Autism and Epilepsy Disorders [J].
Alturki, Fahd A. ;
Aljalal, Majid ;
Abdurraqeeb, Akram M. ;
AlSharabi, Khalil ;
Al-Shamma'a, Abdullrahman A. .
IEEE ACCESS, 2021, 9 :24334-24349
[7]   EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques [J].
Alturki, Fahd A. ;
AlSharabi, Khalil ;
Abdurraqeeb, Akram M. ;
Aljalal, Majid .
SENSORS, 2020, 20 (09)
[8]   Linear predictive coding distinguishes spectral EEG features of Parkinson's disease [J].
Anjum, Md Fahim ;
Dasgupta, Soura ;
Mudumbai, Raghuraman ;
Singh, Arun ;
Cavanagh, James F. ;
Narayanan, Nandakumar S. .
PARKINSONISM & RELATED DISORDERS, 2020, 79 :79-85
[9]  
Bisong E., 2019, Building machine learning and deep learning models on Google Cloud Platform: A comprehensive guide for beginners, P243, DOI DOI 10.1007/978-1-4842-4470-824
[10]   EEG complexity as a biomarker for autism spectrum disorder risk [J].
Bosl, William ;
Tierney, Adrienne ;
Tager-Flusberg, Helen ;
Nelson, Charles .
BMC MEDICINE, 2011, 9