Modeling the hemodynamic response to brain activation

被引:836
作者
Buxton, RB [1 ]
Uludag, K [1 ]
Dubowitz, DJ [1 ]
Liu, TT [1 ]
机构
[1] Univ Calif San Diego, Dept Radiol, Ctr Funct MRI 0677, La Jolla, CA 92093 USA
关键词
hemodynamic response; brain activation; fMRI;
D O I
10.1016/j.neuroimage.2004.07.013
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neural activity in the brain is accompanied by changes in cerebral blood flow (CBF) and blood oxygenation that are detectable with functional magnetic resonance imaging (fMRI) techniques. In this paper, recent mathematical models of this hemodynamic response are reviewed and integrated. Models are described for: (1) the blood oxygenation level dependent (BOLD) signal as a function of changes in cerebral oxygen extraction fraction (E) and cerebral blood volume (CBV); (2) the balloon model, proposed to describe the transient dynamics of CBV and deoxyhemoglobin (Hb) and how they affect the BOLD signal; (3) neurovascular coupling, relating the responses in CBF and cerebral metabolic rate of oxygen (CMRO2) to the neural activity response; and (4) a simple model for the temporal nonlinearity of the neural response itself. These models are integrated into a mathematical framework describing the steps linking a stimulus to the measured BOLD and CBF responses. Experimental results examining transient features of the BOLD response (post-stimulus undershoot and initial dip), nonlinearities of the hemodynamic response, and the role of the physiologic baseline state in altering the BOLD signal are discussed in the context of the proposed models. Quantitative modeling of the hemodynamic response, when combined with experimental data measuring both the BOLD and CBF responses, makes possible a more specific and quantitative assessment of brain physiology than is possible with standard BOLD imaging alone. This approach has the potential to enhance numerous studies of brain function in development, health, and disease. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:S220 / S233
页数:14
相关论文
共 88 条
[1]   CNS energy metabolism as related to function [J].
Ames, A .
BRAIN RESEARCH REVIEWS, 2000, 34 (1-2) :42-68
[2]   The effects of graded hypercapnia on the activation flow coupling response due to forepaw stimulation in α-chloralose anesthetized rats [J].
Ances, BM ;
Greenberg, JH ;
Detre, JA .
BRAIN RESEARCH, 2001, 911 (01) :82-88
[3]   An energy budget for signaling in the grey matter of the brain [J].
Attwell, D ;
Laughlin, SB .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (10) :1133-1145
[4]   A model of the coupling between brain electrical activity, metabolism, and hemodynamics: Application to the interpretation of functional neuroimaging [J].
Aubert, A ;
Costalat, R .
NEUROIMAGE, 2002, 17 (03) :1162-1181
[5]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[6]  
BEHZADI Y, 2004, ISMRM 12 SCI M KYOT
[7]   Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response [J].
Birn, RM ;
Saad, ZS ;
Bandettini, PA .
NEUROIMAGE, 2001, 14 (04) :817-826
[8]   THE INTRAVASCULAR CONTRIBUTION TO FMRI SIGNAL CHANGE - MONTE-CARLO MODELING AND DIFFUSION-WEIGHTED STUDIES IN-VIVO [J].
BOXERMAN, JL ;
BANDETTINI, PA ;
KWONG, KK ;
BAKER, JR ;
DAVIS, TL ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (01) :4-10
[9]   MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC-SUSCEPTIBILITY PERTURBATIONS [J].
BOXERMAN, JL ;
HAMBERG, LM ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :555-566
[10]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221