Local characterizations of infinite groups whose ascendant subgroups are permutable

被引:5
作者
Ballester-Bolinches, Adolfo [1 ]
Kurdachenko, Leonid A. [2 ]
Otal, Javier [3 ]
Pedraza, Tatiana [4 ]
机构
[1] Univ Valencia, Dept Algebra, E-46100 Valencia, Spain
[2] Natl Univ Dnepropetrovsk, Dept Algebra, UA-49010 Dnepropetrovsk, Ukraine
[3] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[4] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
FINITE-GROUPS; SUBNORMAL SUBGROUPS; TRANSITIVE RELATION;
D O I
10.1515/FORUM.2010.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a group G is said to be permutable in G, if HK = KH for every subgroup K of G. Every permutable subgroup is ascendant, but, in general, the converse is far from being true. In this paper we characterize some infinite groups whose ascendant subgroups are permutable in terms of their Sylow structure.
引用
收藏
页码:187 / 201
页数:15
相关论文
共 24 条
[1]   Finite soluble groups with permutable subnormal subgroups [J].
Alejandre, MJ ;
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF ALGEBRA, 2001, 240 (02) :705-722
[2]   On periodic radical groups in which permutability is a transitive relation [J].
Ballester-Bolinches, A. ;
Kurdachenko, L. A. ;
Pedraza, Tatiana .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (03) :665-671
[3]   Sylow permutable subnormal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Esteban-Romero, R .
JOURNAL OF ALGEBRA, 2002, 251 (02) :727-738
[4]   On a class of locally finite T-groups [J].
Ballester-Bolinches, Adolfo ;
Heineken, Hermann ;
Pedraza, Tatiana .
FORUM MATHEMATICUM, 2007, 19 (02) :297-306
[5]  
BALLESTERBOLINC.A, 2008, REV MAT IBEROAM, V24, P754
[6]   Criteria for permutability to be transitive in finite groups [J].
Beidleman, JC ;
Brewster, B ;
Robinson, DJS .
JOURNAL OF ALGEBRA, 1999, 222 (02) :400-412
[7]  
Chernikov S. N., 1955, MAT SBORNIK, V37, P557
[8]  
Dixon M. R., 1994, Sylow Theory, Formations and Fitting Classes in Locally Finite Groups
[9]  
Huppert B., 1961, ARCH MATH, V12, P161
[10]  
Iwasawa K., 1943, JAPAN J MATH, V18, P709