The inverse design of structural color using machine learning

被引:57
作者
Huang, Zhao [1 ,2 ,3 ]
Liu, Xin [1 ,2 ,3 ]
Zang, Jianfeng [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Innovat Inst, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
SILICON NANOSTRUCTURES;
D O I
10.1039/c9nr06127d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficiently identifying optical structures with desired functionalities, referred to as inverse design, can dramatically accelerate the invention of new photonic devices, and this is especially useful in the design of large scale integrated photonic chips. Structural color with high-resolution, high-saturation, and low-loss holds great promise in image display, data storage and information security. However, the inverse design of structural color remains an open challenge, and this impedes practical application. Here, we propose an inverse design strategy for structural color using machine learning (ML) technologies. The supervised learning (SL) models are trained with the geometries and colors of dielectric arrays to capture accurate geometry-color relationships, and these are then applied to a reinforcement learning (RL) algorithm in order to find the optical structural geometries for the desired color. Our work succeeds in finding simple and accurate models to describe geometry-color relationships, which significantly improves the efficiency of the design. This strategy provides a systematic method to directly encode generic functionality into a set of structures and geometries, paving the way for the inverse design of functional photonic devices.
引用
收藏
页码:21748 / 21758
页数:11
相关论文
共 46 条
[1]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[2]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[3]   Dynamic Color Displays Using Stepwise Cavity Resonators [J].
Chen, Yiqin ;
Duan, Xiaoyang ;
Matuschek, Marcus ;
Zhou, Yanming ;
Neubrech, Frank ;
Duan, Huigao ;
Liu, Na .
NANO LETTERS, 2017, 17 (09) :5555-5560
[4]   Plasmonic Metasurfaces for Coloration of Plastic Consumer Products [J].
Clausen, Jeppe S. ;
Hojlund-Nielsen, Emil ;
Christiansen, Alexander B. ;
Yazdi, Sadegh ;
Grajower, Meir ;
Taha, Hesham ;
Levy, Uriel ;
Kristensen, Anders ;
Mortensen, N. Asger .
NANO LETTERS, 2014, 14 (08) :4499-4504
[5]   Materials design by evolutionary optimization of functional groups in metal-organic frameworks [J].
Collins, Sean P. ;
Daff, Thomas D. ;
Piotrkowski, Sarah S. ;
Woo, Tom K. .
SCIENCE ADVANCES, 2016, 2 (11)
[6]   Machine learning topological states [J].
Deng, Dong-Ling ;
Li, Xiaopeng ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2017, 96 (19)
[7]  
Dong Y., 2018, ARXIV180910860
[8]   Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space [J].
Dong, Zhaogang ;
Ho, Jinfa ;
Yu, Ye Feng ;
Fu, Yuan Hsing ;
Paniagua-Dominguez, Ramon ;
Wang, Sihao ;
Kuznetsov, Arseniy I. ;
Yang, Joel K. W. .
NANO LETTERS, 2017, 17 (12) :7620-7628
[9]   Silicon Nanostructures for Bright Field Full Color Prints [J].
Flauraud, Valentin ;
Reyes, Miguel ;
Paniagua-Dominguez, Ramon ;
Kuznetsov, Arseniy I. ;
Brugger, Juergen .
ACS PHOTONICS, 2017, 4 (08) :1913-1919
[10]   Probabilistic machine learning and artificial intelligence [J].
Ghahramani, Zoubin .
NATURE, 2015, 521 (7553) :452-459