An improved water-use efficiency for maize grown under regulated deficit irrigation

被引:310
|
作者
Kang, SZ
Shi, WJ
Zhang, JH [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Biol, Kowloon Tong, Hong Kong, Peoples R China
[2] Water Conservat & Soil Eros Res Inst, Yangling, Shaanxi, Peoples R China
[3] NW Agr Univ, Inst Agr Soil & Water Engn, Yangling, Shaanxi, Peoples R China
关键词
maize (Zea may s); water-use efficiency; soil drying; regulated deficit irrigation;
D O I
10.1016/S0378-4290(00)00095-2
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The rapid decline of water resources on the semi-arid loess plateau in northwest China has led to the urgent need to reduce irrigation. Regulated deficit irrigation (RDI), i.e. a controlled soil water deficit applied at certain periods of a crop season, can save water and may maintain the yield. In this paper, the timing and the extent of RDI were studied in a field experiment on maize crops for 2 years (1996-1997) in this area. Controlled soil water deficit, either mild (50-60% of field capacity) or severe (40-50%), was applied at both the seedling and the stem-elongation stages. Stomatal resistance and leaf photosynthesis of water-stressed plants rapidly recovered to the control level 3 days after rewatering if such regulated water deficit was applied at the seedling stage. Controlled soil water deficit also inhibited the stem-elongation, stimulated root system development and therefore resulted in a substantially enhanced root-to-shoot ratio. Soil water deficit at the seedling stage apparently had no significant influence on the final grain yield, but the plants droughted at the seedling stage were better adapted to the later soil water deficit at the stem-elongation stage. Grain yield of plots that were well irrigated during the seedling stage was substantially reduced by the soil drying at the stem-elongation stage. However, the grain yield of those plots that were subjected to a soil drying at the seedling stage was not significantly reduced by a further mild soil drying (55% of field capacity at the minimum) at the stem-elongation stage. Grain yield of these plots was similar (no significant difference) to the always well-irrigated control. Water-use efficiency for these plots was substantially improved as a result. It is therefore recommended that a soil drying at the seedling stage plus a further mild soil drying at the stem-elongation stage is the optimum irrigation method for the maize production in this semi-arid area. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [21] Influence of Deficit Irrigation on Soil Water Distribution and Water Use Efficiency of Waxy Maize Under Rain-Shelter Cultivation
    Yuan, Chengfu
    Wang, Xue
    Zhou, Miao
    JOURNAL OF BIOSYSTEMS ENGINEERING, 2024, 49 (01) : 52 - 60
  • [22] Engineering innovations to improve irrigation water-use efficiency
    Kouichi, T
    Mitsuo, I
    Karim, NN
    Ichiro, K
    Yukuo, A
    JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 : 36 - 36
  • [23] Effect of Activated Water Irrigation on the Yield and Water Use Efficiency of Winter Wheat under Irrigation Deficit
    Wang, Huan
    Fan, Jun
    Fu, Wei
    AGRONOMY-BASEL, 2022, 12 (06):
  • [24] Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation
    Webber, H. A.
    Madramootoo, C. A.
    Bourgault, M.
    Horst, M. G.
    Stulina, G.
    Smith, D. L.
    AGRICULTURAL WATER MANAGEMENT, 2006, 86 (03) : 259 - 268
  • [25] Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree
    Cui, Ningbo
    Du, Taisheng
    Kang, Shaozhong
    Li, Fusheng
    Hu, Xiaotao
    Wang, Mixia
    Li, Zhijun
    AGRICULTURAL WATER MANAGEMENT, 2009, 96 (11) : 1615 - 1622
  • [26] Effects of Soil Water, Plant, Water Saving and Yield Increasing of Maize under Regulated Deficit Drip Irrigation
    Wei Y.
    Ma Y.
    Liu H.
    Zhang Y.
    Yang J.
    Zhang Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2018, 49 (03): : 252 - 260
  • [27] Effects of Deficit-Regulated Irrigation on Root-Growth Dynamics and Water-Use Efficiency of Winter Wheat in a Semi-Arid Area
    Wang, Ziqian
    Zhang, Bo
    Li, Jiahao
    Lian, Shihao
    Zhang, Jinshan
    Shi, Shubing
    WATER, 2024, 16 (18)
  • [28] Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis
    Yu, Liuyang
    Zhao, Xining
    Gao, Xiaodong
    Siddique, Kadambot H. M.
    AGRICULTURAL WATER MANAGEMENT, 2020, 228
  • [29] Improved Water Use Efficiency and Yield of Drip-Irrigated Pepper under Full and Deficit Irrigation Conditions
    Moustafa, Mahmoud M.
    Abd El-wahed, Ahmed H.
    Hamad, Saleh A.
    Sheta, Mohamed H.
    EGYPTIAN JOURNAL OF SOIL SCIENCE, 2024, 64 (02): : 423 - 442
  • [30] Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China
    Shen, Dongping
    Wang, Keru
    Zhou, Linli
    Fang, Liang
    Wang, Zhen
    Fu, Jiale
    Zhang, Tingting
    Liang, Zhongyu
    Xie, Ruizhi
    Ming, Bo
    Hou, Peng
    Xue, Jun
    Li, Jianmin
    Kang, Xiaojun
    Zhang, Guoqiang
    Li, Shaokun
    AGRONOMY-BASEL, 2024, 14 (02):