Phase-field modeling of faceted growth in solidification of alloys

被引:1
作者
Xing, Hui [1 ]
An, Qi [1 ]
Dong, Xianglei [2 ]
Han, Yongsheng [3 ]
机构
[1] Northwestern Polytech Univ, Key Lab Space Appl Phys & Chem, Xian 710029, Peoples R China
[2] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, EMMS Grp, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
faceted growth; dendrite; phase-field model; DENDRITE GROWTH;
D O I
10.1088/1674-1056/ac3398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A regularization of the surface tension anisotropic function used in vapor-liquid-solid nanowire growth was introduced into the quantitative phase-field model to simulate the faceted growth in solidification of alloys. Predicted results show that the value of delta can only affect the region near the tip, and the convergence with respect to delta can be achieved with the decrease of delta near the tip. It can be found that the steady growth velocity is not a monotonic function of the cusp amplitude, and the maximum value is approximately at epsilon = 0.8 when the supersaturation is fixed. Moreover, the growth velocity is an increasing function of supersaturation with the morphological transition from facet to dendrite.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Highly undercooled germanium: Growth velocity measurements and microstructural analysis [J].
Battersby, SE ;
Cochrane, RF ;
Mullis, AM .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 226 :443-447
[2]   Faceted and dendritic morphology change in alloy solidification [J].
Bollada, P. C. ;
Jimack, P. K. ;
Mullis, A. M. .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 144 :76-84
[3]   Phase-field modeling of twin-related faceted dendrite growth of silicon [J].
Chen, G. Y. ;
Lin, H. K. ;
Lan, C. W. .
ACTA MATERIALIA, 2016, 115 :324-332
[4]   Phase field modeling of growth competition of silicon grains [J].
Chen, P. ;
Tsai, Y. L. ;
Lan, C. W. .
ACTA MATERIALIA, 2008, 56 (15) :4114-4122
[5]   Phase-field approach for faceted solidification -: art. no. 041604 [J].
Debierre, JM ;
Karma, A ;
Celestini, F ;
Guérin, R .
PHYSICAL REVIEW E, 2003, 68 (04) :416041-416041
[6]  
Echebarria B, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.061604
[7]   In situ observation of Si faceted dendrite growth from low-degree-of-undercooling melts [J].
Fujiwara, Kozo ;
Maeda, Kensaku ;
Usami, Noritaka ;
Sazaki, Gen ;
Nose, Yoshitaro ;
Nomura, Akiko ;
Shishido, Toetsu ;
Nakajima, Kazuo .
ACTA MATERIALIA, 2008, 56 (11) :2663-2668
[8]   Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting [J].
Fujiwara, Kozo ;
Pan, Wugen ;
Usami, Noritaka ;
Sawada, Kohei ;
Tokairin, Masatoshi ;
Nose, Yoshitaro ;
Nomura, Akiko ;
Shishido, Toetsu ;
Nakajima, Kazuo .
ACTA MATERIALIA, 2006, 54 (12) :3191-3197
[9]   CRYSTAL-GROWTH KINETICS [J].
JACKSON, KA .
MATERIALS SCIENCE AND ENGINEERING, 1984, 65 (01) :7-13
[10]   Phase-field formulation for quantitative modeling of alloy solidification [J].
Karma, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (11) :115701-1