Site-specific catalytic activity in exfoliated MoS2 single-layer polytypes for hydrogen evolution: basal plane and edges

被引:160
作者
Fan, Xiao-Li [1 ]
Yang, Yi [1 ]
Xiao, Pin [1 ]
Lau, Woon-Ming [2 ]
机构
[1] Northwestern Polytech Univ, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[2] Chengdu Green Energy & Green Mfg Technol R&D Ctr, Chengdu 610207, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROLYTIC HYDROGEN; ULTRATHIN NANOSHEETS; RESTACKED MOS2; GRAPHENE; POINTS;
D O I
10.1039/c4ta05257a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We performed ab initio calculations on the basic set of MoS2 single-layer materials, namely the 1H, 1T and 1T' polytypes,to lay a theoretical framework on the emerging breakthrough-discoveries of high activity towards the hydrogen evolution reaction (HER) in exfoliated MoS2 and related materials. Our calculations show that for exfoliated MoS2, 1T' is the most HER active polytype, with active sites both on the basal plane and at the edges of the layered grains. In comparison, the basal planes of the 1H and 1T polytypes are HER inactive and their edge-sites are not as active as those of the 1T' polytype. We also found that 1T-MoS2 is unstable and easily transforms into 1T'-MoS2, and the 1T' phase is metastable with a considerable barrier >0.7 eV to bar its transformation into the most stable 1H phase. Further, unlike the case of exfoliated WS2, the HER activity of exfoliated MoS2 is not so critically affected by the lattice strain. In addition, in contrast to the 1T'-WS2, the 1T'-MoS2 is not metallic but has a very small bandgap of 0.1-0.2 eV. Hence, 1T'-MoS2 should have a high enough conductivity and other suitable properties for it to function as an electrochemical HER catalyst.
引用
收藏
页码:20545 / 20551
页数:7
相关论文
共 40 条
[1]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[2]  
Bockris J., 1998, Modern Electrochemistry 2A: Fundamentals of Electrodics, V2A
[3]   One-dimensional metallic edge states in MoS2 -: art. no. 196803 [J].
Bollinger, MV ;
Lauritsen, JV ;
Jacobsen, KW ;
Norskov, JK ;
Helveg, S ;
Besenbacher, F .
PHYSICAL REVIEW LETTERS, 2001, 87 (19) :1-196803
[4]   Hydrogen evolution on nano-particulate transition metal sulfides [J].
Bonde, Jacob ;
Moses, Poul G. ;
Jaramillo, Thomas F. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
FARADAY DISCUSSIONS, 2008, 140 :219-231
[5]   Projector augmented wave calculation of x-ray absorption spectra at the L2,3 edges [J].
Bunau, Oana ;
Calandra, Matteo .
PHYSICAL REVIEW B, 2013, 87 (20)
[6]   Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials [J].
Chen, Zhebo ;
Cummins, Dustin ;
Reinecke, Benjamin N. ;
Clark, Ezra ;
Sunkara, Mahendra K. ;
Jaramillo, Thomas F. .
NANO LETTERS, 2011, 11 (10) :4168-4175
[7]   Size effect of graphene on electrocatalytic activation of oxygen [J].
Deng, Dehui ;
Yu, Liang ;
Pan, Xiulian ;
Wang, Shuang ;
Chen, Xiaoqi ;
Hu, P. ;
Sun, Lixian ;
Bao, Xinhe .
CHEMICAL COMMUNICATIONS, 2011, 47 (36) :10016-10018
[8]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[9]   Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2 [J].
Eda, Goki ;
Fujita, Takeshi ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Chen, Mingwei ;
Chhowalla, Manish .
ACS NANO, 2012, 6 (08) :7311-7317
[10]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116