Highly accurate model for prediction of lung nodule malignancy with CT scans

被引:128
作者
Causey, Jason L. [1 ,7 ]
Zhang, Junyu [2 ]
Ma, Shiqian [3 ]
Jiang, Bo [4 ]
Qualls, Jake A. [1 ,7 ]
Politte, David G. [5 ]
Prior, Fred [6 ]
Zhang, Shuzhong [2 ]
Huang, Xiuzhen [1 ,7 ]
机构
[1] Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA
[2] Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USA
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[4] Shanghai Univ Finance & Econ, Res Ctr Management Sci & Data Analyt, Sch Informat Management & Engn, Shanghai 200433, Peoples R China
[5] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[6] Univ Arkansas Med Sci, Dept Biomed Informat, Little Rock, AR 72205 USA
[7] UALR UAMS Joint Grad Program Bioinformat, Little Rock, AR 72204 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
IMAGE DATABASE CONSORTIUM; COMPUTED-TOMOGRAPHY; LIDC; DIAGNOSIS;
D O I
10.1038/s41598-018-27569-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep learning convolutional neural networks (CNN). For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort. All nodules were identified and classified by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of similar to 0.99. This is commensurate with the analysis of the dataset by experienced radiologists. Our approach, NoduleX, provides an effective framework for highly accurate nodule malignancy prediction with the model trained on a large patient population. Our results are replicable with software available at http://bioinformatics.astate.edu/NoduleX.
引用
收藏
页数:12
相关论文
共 37 条
  • [1] Implementing lung cancer screening: the US experience
    Aberle, D. R.
    [J]. CLINICAL RADIOLOGY, 2017, 72 (05) : 401 - 406
  • [2] Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
    Aberle, Denise R.
    Adams, Amanda M.
    Berg, Christine D.
    Black, William C.
    Clapp, Jonathan D.
    Fagerstrom, Richard M.
    Gareen, Ilana F.
    Gatsonis, Constantine
    Marcus, Pamela M.
    Sicks, JoRean D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) : 395 - 409
  • [3] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [4] [Anonymous], EMBC
  • [5] [Anonymous], DEEPDREAM CODE EXAMP
  • [6] [Anonymous], 2002, R NEWS
  • [7] [Anonymous], BENIGN MALIGNANT LUN
  • [8] [Anonymous], 2016, COMPUTATIONAL MATH M
  • [9] Arindra Adiyoso Setio A, 2016, VALIDATION COMPARISO
  • [10] The lung image database consortium (LIDC): Ensuring the integrity of expert-defined "truth"
    Armato, Samuel G., III
    Roberts, Rachael Y.
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    McLennan, Geoffrey
    Engelmann, Roger M.
    Bland, Peyton H.
    Aberle, Denise R.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Croft, Barbara Y.
    Clarke, Laurence P.
    [J]. ACADEMIC RADIOLOGY, 2007, 14 (12) : 1455 - 1463