An Embedded Method for Integrating Systems of Structurally Separated Ordinary Differential Equations

被引:4
作者
Eremin, A. S. [1 ]
Olemskoy, I. V. [1 ]
机构
[1] St Petersburg State Univ, Fac Appl Math & Control Proc, St Petersburg 198504, Russia
关键词
Cauchy problem for systems of ordinary differential equations; embedded method; family of economical fifth-order numerical schemes; Dormand-Prince type methods; Runge-Kutta method;
D O I
10.1134/S0965542510030048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An explicit embedded method of the Dormand-Prince type designed for integrating systems of ordinary differential equations of special form is examined. A family of economical fifth-order numerical schemes for integrating systems of structurally separated ordinary differential equations is constructed.
引用
收藏
页码:414 / 427
页数:14
相关论文
共 17 条
[1]  
ARUSHANYAN AB, 1990, NUMERICAL SOLUTION O
[2]  
Dormand J.R., 1980, Journal of computational and applied mathematics, V6, P19, DOI DOI 10.1016/0771-050X
[3]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[4]   NEW RUNGE-KUTTA ALGORITHMS FOR NUMERICAL-SIMULATION IN DYNAMICAL ASTRONOMY [J].
DORMAND, JR ;
PRINCE, PJ .
CELESTIAL MECHANICS, 1978, 18 (03) :223-232
[5]  
Hairer E., 1987, Solving Ordinary Differential Equations: Nonstiff Problems, V1
[6]  
Kiselev Yu.N., 1991, ZH VYCH MAT MAT FIZ, V31, P1763
[7]  
KUTUZOV SA, 2003, MATH METHODS RES SPA
[8]  
Lawson J.D., 1977, The Physics of Charged-Particle Beams
[9]  
Olemskoy I. V., 2002, Comput. Math. and Math. Phys., V42, P1135
[10]  
Olemskoy I. V., 2005, Comput Math. and Math. Phys., V45, P1140