A multichip neuromorphic system for spike-based visual information processing

被引:51
|
作者
Vogelstein, R. Jacob [1 ]
Mallik, Udayan
Culurciello, Eugenio
Cauwenberghs, Gert
Etienne-Cummings, Ralph
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[3] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
[4] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
D O I
10.1162/neco.2007.19.9.2281
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a multichip, mixed-signal VLSI system for spike-based vision processing. The system consists of an 80 x 60 pixel neuromorphic retina and a 4800 neuron silicon cortex with 4,194,304 synapses. Its functionality is illustrated with experimental data on multiple components of an attention-based hierarchical model of cortical object recognition, including feature coding, salience detection, and foveation. This model exploits arbitrary and reconfigurable connectivity between cells in the multichip architecture, achieved by asynchronously routing neural spike events within and between chips according to a memory-based look-up table. Synaptic parameters, including conductance and reversal potential, are also stored in memory and are used to dynamically configure synapse circuits within the silicon neurons.
引用
收藏
页码:2281 / 2300
页数:20
相关论文
共 50 条
  • [1] Ternary spike-based neuromorphic signal processing system
    Wang, Shuai
    Zhang, Dehao
    Belatreche, Ammar
    Xiao, Yichen
    Qing, Hongyu
    Wei, Wenjie
    Zhang, Malu
    Yang, Yang
    NEURAL NETWORKS, 2025, 187
  • [2] Spike-Based Analog-Digital Neuromorphic Information Processing System for Sensor Applications
    Sanchez, Giovanny
    Koickal, Thomas Jacob
    Athul Sripad, T. A.
    Gouveia, Luiz Carlos
    Hamilton, Alister
    Madrenas, Jordi
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 1624 - 1627
  • [3] Neuromorphic Readout Integrated Circuits and Related Spike-based Image Processing
    Scribner, Dean
    Petty, Thomas
    Mui, Peter
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017, : 274 - 277
  • [4] Resonant Tunneling Diode Nano-Optoelectronic Excitable Nodes for Neuromorphic Spike-Based Information Processing
    Hejda, Matej
    Alanis, Juan Arturo
    Ortega-Piwonka, Ignacio
    Lourenco, Joao
    Figueiredo, Jose
    Javaloyes, Julien
    Romeira, Bruno
    Hurtado, Antonio
    PHYSICAL REVIEW APPLIED, 2022, 17 (02)
  • [5] Resistive memories for spike-based neuromorphic circuits
    Vianello, E.
    Werner, T.
    Bichler, O.
    Valentian, A.
    Molas, G.
    Yvert, B.
    De Salvo, B.
    Perniola, L.
    2017 IEEE 9TH INTERNATIONAL MEMORY WORKSHOP (IMW), 2017, : 135 - 140
  • [6] A Spike-Based Neuromorphic Architecture of Stereo Vision
    Risi, Nicoletta
    Aimar, Alessandro
    Donati, Elisa
    Solinas, Sergio
    Indiveri, Giacomo
    FRONTIERS IN NEUROROBOTICS, 2020, 14
  • [7] Visual Spike-based Convolution Processing with a Cellular Automata Architecture
    Rivas-Perez, M.
    Linares-Barranco, A.
    Cerda, J.
    Ferrando, N.
    Jimenez, G.
    Civit, A.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [8] pyNAVIS: An open-source cross-platform software for spike-based neuromorphic audio information processing
    Dominguez-Morales, Juan P.
    Gutierrez-Galan, D.
    Rios-Navarro, A.
    Duran-Lopez, L.
    Dominguez-Morales, M.
    Jimenez-Fernandez, A.
    NEUROCOMPUTING, 2021, 449 : 172 - 175
  • [9] A Neuromorphic VLSI Circuit for Spike-Based Random Sampling
    Chien, Chen-Han
    Liu, Shih-Chii
    Steimer, Andreas
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2018, 6 (01) : 135 - 144
  • [10] Towards spike-based machine intelligence with neuromorphic computing
    Kaushik Roy
    Akhilesh Jaiswal
    Priyadarshini Panda
    Nature, 2019, 575 : 607 - 617