Spectroscopic and magnetic properties of neodymium doped in GdPO4 sub-micron-stars prepared by solvothermal method

被引:21
作者
Kumar, G. A. [1 ]
Balli, Nicolas R. [1 ]
Kailasnath, M. [2 ]
Mimun, L. Christopher [1 ]
Dannangoda, Chamath [3 ]
Martirosyan, Karen S. [3 ]
Santhosh, C. [4 ]
Sardar, Dhiraj K. [1 ]
机构
[1] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA
[2] Cochin Univ Sci & Technol, Int Sch Photon, Kochi 682022, Kerala, India
[3] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA
[4] Manipal Univ, Dept Atom & Mol Spect, Manipal 576104, Karnataka, India
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Multifunctional materials; Optical properties; Magnetic properties; Sub-micron-stars; Rare earths; NANOPARTICLES; NANORODS; LAPO4; GD;
D O I
10.1016/j.jallcom.2016.02.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neodymium-doped gadolinium orthophosphate (GdPO4:Nd3+) luminomagnetic sub-micron-stars were prepared by solvothermal method using metal nitrates and phosphoric acid. Monoclinic star shaped in six lobed sub-micron-stars with 600 nm length is obtained with uniform particle size distribution. After heat-treatment at 800 degrees C for 1 h in air, the stars separate into isolated petal shaped particles and show characteristic emission bands of Nd3+ with the strongest emission at 1064 nm. The emission intensities and fluorescence decay times are dependent on the Nd3+ concentration with the highest emission intensity and longest fluorescence decay time of 311 mu s at 1064 nm with 0.5 mol% Nd3+. Under 808 nm excitation with 12 W/cm(2) power density a quantum yield of 9% was obtained for the 1.0 mol% Nd3+. The presence of paramagnetic Gd3+ gives magnetic properties to the phosphor with a calculated magnetic moment of 1510 and 107,965 Bohr magneton at 300 and 5 K, respectively. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:668 / 673
页数:6
相关论文
共 25 条
[1]   A Novel 3D Architecture of GdPO4 Nanophosphors: Multicolored and White Light Emission [J].
Becerro, Ana I. ;
Rodriguez-Liviano, Sonia ;
Fernandez-Carrion, Alberto J. ;
Ocana, Manuel .
CRYSTAL GROWTH & DESIGN, 2013, 13 (02) :526-535
[2]  
Chen W., 2010, Doped Nanomaterials and Nanodevices
[3]   Thermal evolution, second phases, and sintering behavior of LaPO4•nH2O nanorods prepared by two different chemical synthesis routes [J].
Colomer, M. T. ;
Mosa, J. .
CERAMICS INTERNATIONAL, 2015, 41 (06) :8080-8092
[4]   Facile preparation and bifunctional imaging of Eu-doped GdPO4 nanorods with MRI and cellular luminescence [J].
Du, Qijun ;
Huang, Zhongbing ;
Wu, Zhi ;
Meng, Xianwei ;
Yin, Guangfu ;
Gao, Fabao ;
Wang, Lei .
DALTON TRANSACTIONS, 2015, 44 (09) :3934-3940
[5]  
Gan Fuxi., 1995, Laser Materials
[6]   Spectroscopic properties and Judd-Ofelt analysis of Eu3+ doped GdPO4 nanoparticles and nanowires [J].
Hassairi, M. A. ;
Hernandez, A. Garrido ;
Kallel, T. ;
Dammak, M. ;
Zambon, D. ;
Chadeyron, G. ;
Potdevin, A. ;
Boyer, D. ;
Mahiou, R. .
JOURNAL OF LUMINESCENCE, 2016, 170 :200-206
[7]   Spectroscopic, thermal and cw dual-wavelength laser characteristics of Nd:LaF3 single crystal [J].
Hong, Jiaqi ;
Zhang, Lianhan ;
Li, Jing ;
Wang, Zhaowei ;
He, Jingliang ;
Zhang, Peixiong ;
Wang, Yaqi ;
Hang, Yin .
OPTICAL MATERIALS, 2016, 53 :10-13
[8]   Preparation and luminescence characteristics of monazite Eu3+:LaPO4 nanocrystals in NH4NO3 molten salt [J].
Huang, Xinyang .
OPTICAL MATERIALS, 2015, 50 :81-86
[9]   Nd3+-doped LiYF4 nanocrystals for bio-imaging in the second near-infrared window [J].
Jiang, Xinyi ;
Cao, Cong ;
Feng, Wei ;
Li, Fuyou .
JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (01) :87-95
[10]  
Jie Dai, 2015, Advanced Materials Research, V1120-1121, P396, DOI 10.4028/www.scientific.net/AMR.1120-1121.396