Some oscillation results for second order nonlinear dynamic equations of neutral type

被引:16
作者
Tripathy, A. K. [1 ]
机构
[1] Kakatiya Inst Technol & Sci, Dept Math, Warangal 506015, Andhra Pradesh, India
关键词
Oscillation; Nonoscillation; Neutral; Dynamic equations; Time scale; CRITERIA;
D O I
10.1016/j.na.2009.02.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some oscillation results for the second order nonlinear neutral delay dynamic equation (r(t) ((y(t) + p(t)y(t - tau))(Delta))(gamma))(Delta) + q(t)vertical bar y(t - delta)vertical bar(gamma) sgn y(t - delta) = 0 are obtained on a time scale T, under the assumption integral(infinity)(t0) (1/r(t))(1/gamma) Delta t = infinity, where gamma > 0 is a quotient of odd positive integers. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1727 / E1735
页数:9
相关论文
共 13 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]   Oscillation criteria for second-order nonlinear neutral delay dynamic equations [J].
Agarwal, RP ;
O'Regan, D ;
Saker, SH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (01) :203-217
[3]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scale, DOI DOI 10.1007/978-0-8176-8230-9
[4]   A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales [J].
Dosly, O ;
Hilger, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :147-158
[5]   Boundedness and oscillation for nonlinear dynamic equations on a time scale [J].
Erbe, L ;
Peterson, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) :735-744
[6]   Oscillation criteria for second-order nonlinear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Saker, SH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :701-714
[7]  
Erbe L., 2001, CANAD APPL MATH Q, V9, P1
[8]  
Hardy G. H., 1952, INEQUALITIES
[9]  
Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
[10]  
Peterson, 2001, DYNAMIC EQUATIONS TI, DOI [DOI 10.1007/978-1-4612-0201-1, 10.1007/978-1-4612-0201-1]