History Matching Geostatistical Model Realizations Using a Geometrical Domain Based Parameterization Technique

被引:5
作者
Ding, Didier Yu [1 ]
Roggero, Frederic [1 ]
机构
[1] Inst Francais Petrole, Reservoir Engn Dept, F-92852 Rueil Malmaison, France
关键词
Constrained geostatistical realization; Gaussian white noise; Gradual deformation; Local parameterization; History matching; CALIBRATION; SIMULATIONS;
D O I
10.1007/s11004-010-9273-x
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Reservoir characterization needs the integration of various data through history matching, especially dynamic information such as production or 4D seismic data. Although reservoir heterogeneities are commonly generated using geostatistical models, random realizations cannot generally match observed dynamic data. To constrain model realizations to reproduce measured dynamic data, an optimization procedure may be applied in an attempt to minimize an objective function, which quantifies the mismatch between real and simulated data. Such assisted history matching methods require a parameterization of the geostatistical model to allow the updating of an initial model realization. However, there are only a few parameterization methods available to update geostatistical models in a way consistent with the underlying geostatistical properties. This paper presents a local domain parameterization technique that updates geostatistical realizations using assisted history matching. This technique allows us to locally change model realizations through the variation of geometrical domains whose geometry and size can be easily controlled and parameterized. This approach provides a new way to parameterize geostatistical realizations in order to improve history matching efficiency.
引用
收藏
页码:413 / 432
页数:20
相关论文
共 50 条
[41]   Assisted history matching for the inversion of fractures based on discrete fracture-matrix model with different combinations of inversion parameters [J].
Zhang, Kai ;
Zhang, Xiaoming ;
Zhang, Liming ;
Li, Lixin ;
Sun, Hai ;
Huang, Zhaoqin ;
Yao, Jun .
COMPUTATIONAL GEOSCIENCES, 2017, 21 (5-6) :1365-1383
[42]   Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance [J].
Park, Han-Young ;
Datta-Gupta, Akhil ;
King, Michael J. .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2015, 125 :48-66
[43]   Ensemble-based multi-scale history-matching using second-generation wavelet transform [J].
Gentilhomme, Theophile ;
Oliver, Dean S. ;
Mannseth, Trond ;
Caumon, Guillaume ;
Moyen, Remi ;
Doyen, Philippe .
COMPUTATIONAL GEOSCIENCES, 2015, 19 (05) :999-1025
[44]   Iterative learning-based many-objective history matching using deep neural network with stacked autoencoder [J].
Kim, Jaejun ;
Park, Changhyup ;
Ahn, Seongin ;
Kang, Byeongcheol ;
Jung, Hyungsik ;
Jang, Ilsik .
PETROLEUM SCIENCE, 2021, 18 (05) :1465-1482
[45]   Ensemble-based multi-scale history-matching using second-generation wavelet transform [J].
Théophile Gentilhomme ;
Dean S. Oliver ;
Trond Mannseth ;
Guillaume Caumon ;
Rémi Moyen ;
Philippe Doyen .
Computational Geosciences, 2015, 19 :999-1025
[46]   Four-Dimensional History Matching Using ES-MDA and Flow-Based Distance-to-Front Measurement [J].
Barrela, Eduardo ;
Berthet, Philippe ;
Trani, Mario ;
Thual, Olivier ;
Lapeyre, Corentin .
ENERGIES, 2023, 16 (24)
[47]   Feature-based ensemble history matching in a fractured carbonate reservoir using time-lapse deep electromagnetic tomography [J].
Zhang, Yanhui ;
Hoteit, Ibrahim ;
Katterbauer, Klemens ;
Maucec, Marko ;
Marsala, Alberto F. .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
[48]   Reservoir assisted history matching method using a local ensemble Kalman filter based on single-well sensitivity region [J].
Liu W. ;
Zhao H. ;
Lei Z. ;
Chen Z. ;
Cao L. ;
Zhang K. .
Shiyou Xuebao/Acta Petrolei Sinica, 2019, 40 (06) :716-725
[49]   Elasto-Geometrical Model-Based Control of Industrial Manipulators Using Force Feedback: Application to Incremental Sheet Forming [J].
Johra, Marwan ;
Courteille, Eric ;
Deblaise, Dominique ;
Guegan, Sylvain .
ROBOTICS, 2022, 11 (02)
[50]   Assisted history matching using artificial neural network based global optimization method - Applications to Brugge field and a fractured Iranian reservoir [J].
Foroud, Toomaj ;
Seifi, Abbas ;
AminShahidi, Babak .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 123 :46-61