Comparison of performance in breast lesions classification using radiomics and deep transfer learning: An assessment study

被引:2
作者
Danala, Gopichandh [1 ]
Maryada, Sai Kiran R. [2 ]
Pham, Huong [1 ]
Islam, Warid [1 ]
Jones, Meredith [3 ]
Zheng, Bin [1 ]
机构
[1] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
[2] Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA
[3] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT | 2022年 / 12035卷
基金
美国国家卫生研究院;
关键词
Assessment of computer-aided diagnosis schemes; radiomics; deep transfer learning; automated breast lesion; classification; performance of CAD schemes; PREDICT; CANCER; MAMMOGRAPHY;
D O I
10.1117/12.2611886
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radiomics and deep transfer learning have been attracting broad research interest in developing and optimizing CAD schemes of medical images. However, these two technologies are typically applied in different studies using different image datasets. Advantages or potential limitations of applying these two technologies in CAD applications have not been well investigated. This study aims to compare and assess these two technologies in classifying breast lesions. A retrospective dataset including 2,778 digital mammograms is assembled in which 1,452 images depict malignant lesions and 1,326 images depict benign lesions. Two CAD schemes are developed to classify breast lesions. First, one scheme is applied to segment lesions and compute radiomics features, while another scheme applies a pre-trained residual net architecture (ResNet50) as a transfer learning model to extract automated features. Next, the same principal component algorithm (PCA) is used to process both initially computed radiomics and automated features to create optimal feature vectors by eliminating redundant features. Then, several support vector machine (SVM)-based classifiers are built using the optimized radiomics or automated features. Each SVM model is trained and tested using a 10-fold cross-validation method. Classification performance is evaluated using area under ROC curve (AUC). Two SVMs trained using radiomics and automated features yield AUC of 0.77 +/- 0.02 and 0.85 +/- 0.02, respectively. In addition, SVM trained using the fused radiomics and automated features does not yield significantly higher AUC. This study indicates that (1) using deep transfer learning yields higher classification performance, and (2) radiomics and automated features contain highly correlated information in lesion classification.
引用
收藏
页数:8
相关论文
共 21 条
[11]   A Multi-Organ Nucleus Segmentation Challenge [J].
Kumar, Neeraj ;
Verma, Ruchika ;
Anand, Deepak ;
Zhou, Yanning ;
Onder, Omer Fahri ;
Tsougenis, Efstratios ;
Chen, Hao ;
Heng, Pheng-Ann ;
Li, Jiahui ;
Hu, Zhiqiang ;
Wang, Yunzhi ;
Koohbanani, Navid Alemi ;
Jahanifar, Mostafa ;
Tajeddin, Neda Zamani ;
Gooya, Ali ;
Rajpoot, Nasir ;
Ren, Xuhua ;
Zhou, Sihang ;
Wang, Qian ;
Shen, Dinggang ;
Yang, Cheng-Kun ;
Weng, Chi-Hung ;
Yu, Wei-Hsiang ;
Yeh, Chao-Yuan ;
Yang, Shuang ;
Xu, Shuoyu ;
Yeung, Pak Hei ;
Sun, Peng ;
Mahbod, Amirreza ;
Schaefer, Gerald ;
Ellinger, Isabella ;
Ecker, Rupert ;
Smedby, Orjan ;
Wang, Chunliang ;
Chidester, Benjamin ;
That-Vinh Ton ;
Minh-Triet Tran ;
Ma, Jian ;
Minh N Do ;
Graham, Simon ;
Quoc Dang Vu ;
Kwak, Jin Tae ;
Gunda, Akshaykumar ;
Chunduri, Raviteja ;
Hu, Corey ;
Zhou, Xiaoyang ;
Lotfi, Dariush ;
Safdari, Reza ;
Kascenas, Antanas ;
O'Neil, Alison .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) :1380-1391
[12]   Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection [J].
Lehman, Constance D. ;
Wellman, Robert D. ;
Buist, Diana S. M. ;
Kerlikowske, Karla ;
Tosteson, Anna N. A. ;
Miglioretti, Diana L. .
JAMA INTERNAL MEDICINE, 2015, 175 (11) :1828-1837
[13]   Applying a radiomics-based strategy to preoperatively predict lymph node metastasis in the resectable pancreatic ductal adenocarcinoma [J].
Liu, Peng ;
Gu, Qianbiao ;
Hu, Xiaoli ;
Tan, Xianzheng ;
Liu, Jianbin ;
Xie, An ;
Huang, Feng .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (06) :1113-1121
[14]   A novel computer-aided diagnosis system for breast MRI based on feature selection and ensemble learning [J].
Lu, Wei ;
Li, Zhe ;
Chu, Jinghui .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 83 :157-165
[15]   Preoperative prediction of histologic grade in invasive breast cancer by using contrast-enhanced spectral mammography-based radiomics [J].
Mao, Ning ;
Jiao, Zimei ;
Duan, Shaofeng ;
Xu, Cong ;
Xie, Haizhu .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2021, 29 (05) :763-772
[16]   Applying a new computer-aided detection scheme generated imaging marker to predict short-term breast cancer risk [J].
Mirniaharikandehei, Seyedehnafiseh ;
Hollingsworth, Alan B. ;
Patel, Bhavika ;
Heidari, Morteza ;
Liu, Hong ;
Zheng, Bin .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (10)
[17]   CADe for Early Detection of Breast Cancer - Current Status and Why We Need to Continue to Explore New Approaches [J].
Nishikawa, Robert M. ;
Gur, David .
ACADEMIC RADIOLOGY, 2014, 21 (10) :1320-1321
[18]   A review of automatic mass detection and segmentation in mammographic images [J].
Oliver, Arnau ;
Freixenet, Jordi ;
Marti, Joan ;
Perez, Elsa ;
Pont, Josep ;
Denton, Erika R. E. ;
Zwiggelaar, Reyer .
MEDICAL IMAGE ANALYSIS, 2010, 14 (02) :87-110
[19]   AI in Medical Imaging Informatics: Current Challenges and Future Directions [J].
Panayides, Andreas S. ;
Amini, Amir ;
Filipovic, Nenad ;
Sharma, Ashish ;
Tsaftaris, Sotirios A. ;
Young, Alistair ;
Foran, David J. ;
Nhan Do ;
Golemati, Spyretta ;
Kurc, Tahsin ;
Huang, Kun ;
Nikita, Konstantina S. ;
Veasey, Ben P. ;
Zervakis, Michalis ;
Saltz, Joel H. ;
Pattichis, Constantinos S. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) :1837-1857
[20]   Age-specific sensitivities of mammographic screening for breast cancer [J].
Peer, PGM ;
Verbeek, ALM ;
Straatman, H ;
Hendriks, JHCL ;
Holland, R .
BREAST CANCER RESEARCH AND TREATMENT, 1996, 38 (02) :153-160