Adaptive Kalman Filtering with Recursive Noise Estimator for Integrated SINS/DVL Systems

被引:92
作者
Gao, Wei [1 ]
Li, Jingchun [1 ]
Zhou, Guangtao [1 ]
Li, Qian [1 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Adaptive Kalman filtering; Noise statistics; Maximum a posteriori; Integrated navigation; ALIGNMENT;
D O I
10.1017/S0373463314000484
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper considers the estimation of the process state and noise parameters when the statistics of the process and measurement noise are unknown or time varying in the integration system. An adaptive Kalman Filter (AKF) with a recursive noise estimator that is based on maximum a posteriori estimation and one-step smoothing filtering is proposed, and the AKF can provide accurate noise statistical parameters for the Kalman filter in real-time. An exponentially weighted fading memory method is introduced to increase the weights of the recent innovations when the noise statistics are time varying. Also, the innovation covariances within a moving window are averaged to correct the noise statistics estimator. Experiments on the integrated Strapdown Inertial Navigation System (SINS)/ Doppler Velocity Log (DVL) system show that the proposed AKF improves the estimation accuracy effectively and the AKF is robust in the presence of vigorous-manoeuvres and rough sea conditions.
引用
收藏
页码:142 / 161
页数:20
相关论文
共 24 条
[1]   Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter [J].
Al-Shabi, M. ;
Gadsden, S. A. ;
Habibi, S. R. .
SIGNAL PROCESSING, 2013, 93 (02) :420-431
[2]   Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter [J].
Bavdekar, Vinay A. ;
Deshpande, Anjali P. ;
Patwardhan, Sachin C. .
JOURNAL OF PROCESS CONTROL, 2011, 21 (04) :585-601
[3]   Improving adaptive Kalman estimation in GPS/INS integration [J].
Ding, Weidong ;
Wang, Jinling ;
Rizos, Chris ;
Kinlyside, Doug .
JOURNAL OF NAVIGATION, 2007, 60 (03) :517-529
[4]   Study on Innovation Adaptive EKF for In-Flight Alignment of Airborne POS [J].
Fang Jiancheng ;
Yang Sheng .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (04) :1378-1388
[5]   Seam Tracking Monitoring Based on Adaptive Kalman Filter Embedded Elman Neural Network During High-Power Fiber Laser Welding [J].
Gao, Xiangdong ;
You, Deyong ;
Katayama, Seiji .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (11) :4315-4325
[6]  
Gustafsson F., 2000, ADAPTIVE FILTERING C
[7]   GNSS receiver autonomous integrity monitoring (RAIM) performance analysis [J].
Hewitson, Steve ;
Wang, Jinling .
GPS SOLUTIONS, 2006, 10 (03) :155-170
[8]   Extended Receiver Autonomous Integrity Monitoring (eRAIM) for GNSS/INS Integration [J].
Hewitson, Steve ;
Wang, Jinling .
JOURNAL OF SURVEYING ENGINEERING, 2010, 136 (01) :13-22
[9]   An Adaptive Sensor Fusion Method with Applications in Integrated Navigation [J].
Jwo, Dah-Jing ;
Weng, Tsu-Pin .
JOURNAL OF NAVIGATION, 2008, 61 (04) :705-721
[10]   An optimization approach to adaptive Kalman filtering [J].
Karasalo, Maja ;
Hu, Xiaoming .
AUTOMATICA, 2011, 47 (08) :1785-1793