Stochastic integration with respect to fractional Brownian motion

被引:81
作者
Carmona, P
Coutin, L
Montseny, G
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 4, France
[2] LAAS, F-31077 Toulouse, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2003年 / 39卷 / 01期
关键词
Gaussian processes; stochastic integrals; malliavin calculus; fractional integration;
D O I
10.1016/S0246-0203(02)01111-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For every value of the Hurst index H is an element of (0, 1) we define a stochastic integral with respect to fractional Brownian motion of index H. We do so by approximating fractional Brownian motion by semi-martingales. Then, for H > 1/6 we establish an W's change of variables formula, which is more precise than Privault's Ito formula (1998) (established for every H > 0), since it only involves anticipating integrals with respect to a driving Brownian motion. 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:27 / 68
页数:42
相关论文
共 34 条
[1]   Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (01) :121-139
[2]  
[Anonymous], PROBABILITES POTENTI
[3]  
Benassi A, 1997, REV MAT IBEROAM, V13, P19
[4]   Testing for a change of the long-memory parameter [J].
Beran, J ;
Terrin, N .
BIOMETRIKA, 1996, 83 (03) :627-638
[5]   FUNCTIONAL SPACES ASSOCIATED WITH GAUSSIAN-PROCESSES [J].
CIESIELSKI, Z ;
KERKYACHARIAN, G ;
ROYNETTE, B .
STUDIA MATHEMATICA, 1993, 107 (02) :171-204
[6]   Long memory continuous time models [J].
Comte, F ;
Renault, E .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :101-149
[7]   Stochastic differential equations for fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01) :75-80
[8]  
COUTIN L, 2000, IN PRESS PTRF
[9]  
Dai W, 1996, J APPL MATH STOCHAST, V10, P439, DOI DOI 10.1155/S104895339600038X
[10]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214