Thermoelectric Radiation Detector Based on Superconductor-Ferromagnet Systems

被引:50
作者
Heikkila, T. T. [1 ,2 ]
Ojajarvi, R. [1 ,2 ]
Maasilta, I. J. [1 ,2 ]
Strambini, E. [3 ,4 ]
Giazotto, F. [3 ,4 ]
Bergeret, F. S. [5 ,6 ]
机构
[1] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Jyvaskyla, Nanosci Ctr, POB 35, FI-40014 Jyvaskyla, Finland
[3] CNR, Ist Nanosci, NEST, I-56127 Pisa, Italy
[4] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[5] Ctr Mixto CSIC UPV EHU, Ctr Fis Mat, Paseo Manuel de Lardizabal 5, San Sebastian 20018, Spain
[6] Donostia Int Phys Ctr, Paseo Manuel de Lardizabal 4, San Sebastian 20018, Spain
来源
PHYSICAL REVIEW APPLIED | 2018年 / 10卷 / 03期
基金
芬兰科学院; 欧盟地平线“2020”;
关键词
FIELD;
D O I
10.1103/PhysRevApplied.10.034053
中图分类号
O59 [应用物理学];
学科分类号
摘要
We suggest an ultrasensitive detector of electromagnetic fields exploiting the giant thermoelectric effect recently found in superconductor-ferromagnet hybrid structures. Compared with other types of super-conducting detectors where the detected signal is based on variations of the detector impedance, the thermoelectric detector has the advantage of requiring no external driving fields. This is especially relevant in multipixel detectors, where the number of bias lines and the heating induced by them are an issue. We propose different material combinations to implement the detector and provide a detailed analysis of its sensitivity and speed. In particular, we perform a proper noise analysis that includes the cross correlation between heat and charge current noise and thereby describes also thermoelectric detectors with a large thermoelectric figure of merit.
引用
收藏
页数:11
相关论文
共 38 条
[1]   A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR [J].
Ade, P. A. R. ;
Akiba, Y. ;
Anthony, A. E. ;
Arnold, K. ;
Atlas, M. ;
Barron, D. ;
Boettger, D. ;
Borrill, J. ;
Chapman, S. ;
Chinone, Y. ;
Dobbs, M. ;
Elleflot, T. ;
Errard, J. ;
Fabbian, G. ;
Feng, C. ;
Flanigan, D. ;
Gilbert, A. ;
Grainger, W. ;
Halverson, N. W. ;
Hasegawa, M. ;
Hattori, K. ;
Hazumi, M. ;
Holzapfel, W. L. ;
Hori, Y. ;
Howard, J. ;
Hyland, P. ;
Inoue, Y. ;
Jaehnig, G. C. ;
Jaffe, A. H. ;
Keating, B. ;
Kermish, Z. ;
Keskitalo, R. ;
Kisner, T. ;
Le Jeune, M. ;
Lee, A. T. ;
Leitch, E. M. ;
Linder, E. ;
Lungu, M. ;
Matsuda, F. ;
Matsumura, T. ;
Meng, X. ;
Miller, N. J. ;
Morii, H. ;
Moyerman, S. ;
Myers, M. J. ;
Navaroli, M. ;
Nishino, H. ;
Orlando, A. ;
Paar, H. ;
Peloton, J. .
ASTROPHYSICAL JOURNAL, 2014, 794 (02)
[2]   THEORY OF FERMI-LIQUID EFFECTS IN HIGH-FIELD TUNNELING [J].
ALEXANDER, JAX ;
ORLANDO, TP ;
RAINER, D ;
TEDROW, PM .
PHYSICAL REVIEW B, 1985, 31 (09) :5811-5825
[3]   Fully differential cryogenic transistor amplifier [J].
Beev, Nikolai ;
Kiviranta, Mikko .
CRYOGENICS, 2013, 57 :129-133
[4]  
Bergeret F. S., ARXIV170608245
[5]   Development of fast, background-limited transition-edge sensors for the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) for SPICA [J].
Beyer, Andrew D. ;
Kenyon, M. ;
Echternach, P. M. ;
Bumble, B. ;
Runyan, M. C. ;
Chui, T. ;
Bradford, C. M. ;
Holmes, W. A. ;
Bock, J. J. .
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VI, 2012, 8452
[6]   SUPERCONDUCTING QUANTUM DETECTORS [J].
BLUZER, N ;
FORRESTER, MG .
OPTICAL ENGINEERING, 1994, 33 (03) :697-703
[7]   UPPER LIMIT FOR CRITICAL FIELD IN HARD SUPERCONDUCTORS [J].
CLOGSTON, AM .
PHYSICAL REVIEW LETTERS, 1962, 9 (06) :266-&
[8]   A broadband superconducting detector suitable for use in large arrays [J].
Day, PK ;
LeDuc, HG ;
Mazin, BA ;
Vayonakis, A ;
Zmuidzinas, J .
NATURE, 2003, 425 (6960) :817-821
[9]  
Farrah D., ARXIV170902389
[10]   Opportunities for mesoscopics in thermometry and refrigeration:: Physics and applications [J].
Giazotto, F ;
Heikkilä, TT ;
Luukanen, A ;
Savin, AM ;
Pekola, JP .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :217-274