Big mapping class groups and rigidity of the simple circle

被引:8
作者
CALEGARI, D. A. N. N. Y. [1 ]
CHEN, L. V. Z. H. O. U. [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
group actions; low-dimensional dynamics; big mapping class groups; rigidity; GRAPHS;
D O I
10.1017/etds.2020.43
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma denote the mapping class group of the plane minus a Cantor set. We show that every action of Gamma on the circle is either trivial or semiconjugate to a unique minimal action on the so-called simple circle.
引用
收藏
页码:1961 / 1987
页数:27
相关论文
共 19 条
[11]  
Farb B., 2012, PRINCETON MATH SER, V49
[12]  
Ghys E., 1987, CONT MATH, V58, P81
[13]  
Mann K., GEOM TOPOL
[14]  
Mather J. N., 1971, Topology, V10, P297, DOI DOI 10.1016/0040-9383(71)90022-X
[15]   Algebraic and topological properties of big mapping class groups [J].
Patel, Priyam ;
Vlamis, Nicholas G. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (07) :4109-4142
[16]   CLASSIFYING SPACES RELATED TO FOLIATIONS [J].
SEGAL, G .
TOPOLOGY, 1978, 17 (04) :367-382
[17]  
Sergiescu V., 1994, Geometric study of foliations (Tokyo, 1993), P431
[18]   Homotopy types of homeomorphism groups of noncompact 2-manifolds [J].
Yagasaki, T .
TOPOLOGY AND ITS APPLICATIONS, 2000, 108 (02) :123-136
[19]  
Zimmermann BP, 2012, SIB ELECTRON MATH RE, V9, P1