Big mapping class groups and rigidity of the simple circle

被引:8
作者
CALEGARI, D. A. N. N. Y. [1 ]
CHEN, L. V. Z. H. O. U. [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
group actions; low-dimensional dynamics; big mapping class groups; rigidity; GRAPHS;
D O I
10.1017/etds.2020.43
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma denote the mapping class group of the plane minus a Cantor set. We show that every action of Gamma on the circle is either trivial or semiconjugate to a unique minimal action on the so-called simple circle.
引用
收藏
页码:1961 / 1987
页数:27
相关论文
共 19 条
[1]  
[Anonymous], 2004, Geometry & Topology Monographs, DOI [10.2140/gtm.2004.7.431, DOI 10.2140/GTM.2004.7.431]
[2]   ARC AND CURVE GRAPHS FOR INFINITE-TYPE SURFACES [J].
Aramayona, Javier ;
Fossas, Ariadna ;
Parlier, Hugo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4995-5006
[3]   THE GROMOV BOUNDARY OF THE RAY GRAPH [J].
Bavard, Juliette ;
Walker, Alden .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (11) :7647-7678
[4]   Hyperbolicity ray graph and quasi-morphisms on a large modular group [J].
Bavard, Juliette .
GEOMETRY & TOPOLOGY, 2016, 20 (01) :491-535
[5]  
BAVARD JULIETTE, 2018, ARXIV180202715
[6]  
Calegari D., NORMAL SUBGROU UNPUB
[7]  
Calegari D., COMPLEX DYNAMI UNPUB
[8]  
Calegari D., 2009, scl, MSJ Memoirs, V20
[9]  
Calegari D., BLOG POST
[10]   GRAPHS OF CURVES ON INFINITE-TYPE SURFACES WITH MAPPING CLASS GROUP ACTIONS [J].
Durham, Matthew Gentry ;
Fanoni, Federica ;
Vlamis, Nicholas G. .
ANNALES DE L INSTITUT FOURIER, 2018, 68 (06) :2581-2612