Uniform spectral properties of one-dimensional quasicrystals, IV. Quasi-sturmian potentials

被引:13
作者
Damanik, D [1 ]
Lenz, D
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[3] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2003年 / 90卷 / 1期
关键词
D O I
10.1007/BF02786553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider discrete one-dimensional Schrodinger operators with quasi-Sturmian potentials. We present a new approach to the trace map dynamical system which is independent of the initial conditions and establish a characterization of the spectrum in terms of bounded trace map orbits. Using this, it is shown that the operators have purely singular continuous spectrum and their spectrum is a Cantor set of Lebesgue measure zero. We also exhibit a subclass having purely a-continuous spectrum. All these results hold uniformly on the hull generated by a given potential.
引用
收藏
页码:115 / 139
页数:25
相关论文
共 43 条
[1]  
ALLOUCHE JP, UNPUB APPL COMBINATO
[2]  
ALLOUCHE JP, IN PRESS THEORET COM
[3]   SPECTRAL PROPERTIES OF ONE DIMENSIONAL QUASI-CRYSTALS [J].
BELLISSARD, J ;
IOCHUM, B ;
SCOPPOLA, E ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (03) :527-543
[4]   SPECTRAL PROPERTIES OF A TIGHT-BINDING HAMILTONIAN WITH PERIOD DOUBLING POTENTIAL [J].
BELLISSARD, J ;
BOVIER, A ;
GHEZ, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (02) :379-399
[5]  
Berstel J., 1996, Developments in Language Theory II. At the Crossroads of Mathematics, Computer Science and Biology, P13
[6]   SPECTRAL PROPERTIES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH POTENTIALS GENERATED BY SUBSTITUTIONS (VOL 158, PG 45, 1993) [J].
BOVIER, A ;
GHEZ, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (02) :431-432
[7]   ANDERSON LOCALIZATION FOR BERNOULLI AND OTHER SINGULAR POTENTIALS [J].
CARMONA, R ;
KLEIN, A ;
MARTINELLI, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (01) :41-66
[8]  
Carmona R., 1990, SPECTRAL THEORY RAND, DOI 10.1007/978-1-4939-0512-6_4
[9]  
Cassaigne J., 1998, DEV LANGUAGE THEORY, P211
[10]  
Coven E.M., 1973, Math. Syst. Theory, V7, P138