Braiding with Borromean Rings in (3+1)-Dimensional Spacetime

被引:32
作者
Chan, AtMa P. O. [1 ,2 ]
Ye, Peng [1 ,2 ,3 ]
Ryu, Shinsei [4 ,5 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA
[3] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China
[4] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[5] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
TOPOLOGICAL ORDERS; QUANTUM; STATISTICS; STRINGS; EXCITATIONS; SYMMETRY; ANYONS;
D O I
10.1103/PhysRevLett.121.061601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
While winding a particlelike excitation around a looplike excitation yields the celebrated Aharonov-Bohm phase, we find a distinctive braiding phase in the absence of such mutual winding. In this Letter, we propose an exotic particle-loop-loop braiding process, dubbed the Borromean rings braiding. In the process, a particle moves around two unlinked loops, such that its trajectory and the two loops form the Borromean rings or more general Brunnian links. As the particle trajectory does not wind with any of the loops, the resulting braiding phase is fundamentally different from the Aharonov-Bohm phase. We derive an explicit expression for the braiding phase in terms of the underlying Milnor's triple linking number. We also propose topological quantum field theories consisting of an AAB-type topological term which realize the braiding statistics.
引用
收藏
页数:7
相关论文
共 77 条
[1]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[2]   QUANTUM-FIELD THEORY OF NON-ABELIAN STRINGS AND VORTICES [J].
ALFORD, MG ;
LEE, KM ;
MARCHRUSSELL, J ;
PRESKILL, J .
NUCLEAR PHYSICS B, 1992, 384 (1-2) :251-317
[3]   INTERACTIONS AND EXCITATIONS OF NON-ABELIAN VORTICES [J].
ALFORD, MG ;
BENSON, K ;
COLEMAN, S ;
MARCHRUSSELL, J ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1990, 64 (14) :1632-1635
[4]   NOVEL STATISTICS FOR STRINGS AND STRING CHERN-SIMON TERMS [J].
ANEZIRIS, C ;
BALACHANDRAN, AP ;
KAUFFMAN, L ;
SRIVASTAVA, AM .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (14) :2519-2558
[5]  
[Anonymous], 1990, FRACTIONAL STAT ANYO
[6]  
[Anonymous], ARXIV13094721
[7]  
AtMa P.O, 2016, PHYS REV B, V93
[8]  
Baez JC, 2007, ADV THEOR MATH PHYS, V11, P707
[9]   An invitation to higher gauge theory [J].
Baez, John C. ;
Huerta, John .
GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (09) :2335-2392
[10]   Interferometry of non-Abelian anyons [J].
Bonderson, Parsa ;
Shtengel, Kirill ;
Slingerland, J. K. .
ANNALS OF PHYSICS, 2008, 323 (11) :2709-2755