Quantum algorithms for powering stable Hermitian matrices

被引:3
作者
Gonzalez, Guillermo [1 ,2 ]
Trivedi, Rahul [1 ]
Cirac, J. Ignacio [1 ,2 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
基金
欧盟地平线“2020”;
关键词
HAMILTONIAN SIMULATION; SPEED;
D O I
10.1103/PhysRevA.103.062420
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Matrix powering is a fundamental computational primitive in linear algebra. It has widespread applications in scientific computing and engineering and underlies the solution of time-homogeneous linear ordinary differential equations, simulation of discrete-time Markov chains, or discovering the spectral properties of matrices with iterative methods. In this paper, we investigate the possibility of speeding up matrix powering of sparse stable Hermitian matrices on a quantum computer. We present two quantum algorithms that can achieve speedup over the classical matrix powering algorithms: (i) a fast-forwarding algorithm that builds on construction of Apers and Sarlette [Quantum Inf. Comput. 19, 181 (2019)] and (ii) an algorithm based on Hamiltonian simulation. Furthermore, by mapping the N-bit parity determination problem to a matrix powering problem, we provide no-go theorems that limit the quantum speedups achievable in powering non-Hermitian matrices.
引用
收藏
页数:11
相关论文
共 43 条
[1]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, P50, DOI [DOI 10.1145/380752.380758(CIT.ONP.312, DOI 10.1145/380752.380758]
[2]   A Polynomial Quantum Algorithm for Approximating the Jones Polynomial [J].
Aharonov, Dorit ;
Jones, Vaughan ;
Landau, Zeph .
ALGORITHMICA, 2009, 55 (03) :395-421
[3]   Variable time amplitude amplification and quantum algorithms for linear algebra problems [J].
Ambainis, Andris .
29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 :636-647
[4]  
[Anonymous], 2017, Markov Chains, P25, DOI DOI 10.1002/9781119387596.CH3
[5]  
Apers, 2019, THESIS GHENT U
[6]  
Apers S, 2019, QUANTUM INF COMPUT, V19, P181
[7]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[8]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/nphys2253, 10.1038/NPHYS2253]
[9]   Quantum lower bounds by polynomials [J].
Beals, R ;
Buhrman, H ;
Cleve, R ;
Mosca, M ;
De Wolf, R .
JOURNAL OF THE ACM, 2001, 48 (04) :778-797
[10]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371