Controllable Akhmediev breather and Kuznetsov-Ma soliton trains in PT-symmetric coupled waveguides

被引:80
作者
Dai, Chaoqing [1 ,2 ]
Wang, Yueyue [1 ,2 ]
Zhang, Xiaofei [3 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 31130, Zhejiang, Peoples R China
[2] Zhejiang A&F Univ, Zhejiang Prov Key Lab Chem Utilizat Forestry Biom, Linan 31130, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Natl Time Serv Ctr, Key Lab Time & Frequency Primary Stand, Xian 710600, Shaanxi, Peoples R China
来源
OPTICS EXPRESS | 2014年 / 22卷 / 24期
关键词
D O I
10.1364/OE.22.029862
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The PT-symmetric and PT -antisymmetric Akhmediev breather (AB) and Kuznetsov-Ma (KM) soliton train solutions of a (2+1)dimensional variable-coefficient coupled nonlinear Schrodinger equation in PT -symmetric coupled waveguides with gain and loss are derived via the Darboux transformation method. From these analytical solutions, we investigate the controllable behaviors of AB and KM soliton trains in a diffraction decreasing system with exponential profile. By adjusting the relation between the maximum Z(m) of effective propagation distance and the peak locations Z(i) of AB and KM soliton trains, we can control the restraint, maintenance and postpone excitations of AB and KM soliton trains. (C) 2014 Optical Society of America
引用
收藏
页码:29862 / 29867
页数:6
相关论文
共 16 条
  • [11] Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits
    Kedziora, David J.
    Ankiewicz, Adrian
    Akhmediev, Nail
    [J]. PHYSICAL REVIEW E, 2012, 85 (06)
  • [12] Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients
    Kruglov, VI
    Peacock, AC
    Harvey, JD
    [J]. PHYSICAL REVIEW E, 2005, 71 (05):
  • [13] KUZNETSOV EA, 1977, DOKL AKAD NAUK SSSR+, V236, P575
  • [14] Optical solitons in PT periodic potentials
    Musslimani, Z. H.
    Makris, K. G.
    El-Ganainy, R.
    Christodoulides, D. N.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (03)
  • [15] PEREGRINE DH, 1983, J AUST MATH SOC B, V25, P16, DOI 10.1017/S0334270000003891
  • [16] Controllability for two-Kuznetsov-Ma solitons in a (2+1)-dimensional graded-index grating waveguide
    Zhu, Hai-Ping
    Pan, Zhen-Huan
    Fang, Jian-Ping
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (03)