Controllable Akhmediev breather and Kuznetsov-Ma soliton trains in PT-symmetric coupled waveguides

被引:80
作者
Dai, Chaoqing [1 ,2 ]
Wang, Yueyue [1 ,2 ]
Zhang, Xiaofei [3 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 31130, Zhejiang, Peoples R China
[2] Zhejiang A&F Univ, Zhejiang Prov Key Lab Chem Utilizat Forestry Biom, Linan 31130, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Natl Time Serv Ctr, Key Lab Time & Frequency Primary Stand, Xian 710600, Shaanxi, Peoples R China
关键词
Solitons - Mathematical transformations - Waveguides;
D O I
10.1364/OE.22.029862
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The PT-symmetric and PT -antisymmetric Akhmediev breather (AB) and Kuznetsov-Ma (KM) soliton train solutions of a (2+1)dimensional variable-coefficient coupled nonlinear Schrodinger equation in PT -symmetric coupled waveguides with gain and loss are derived via the Darboux transformation method. From these analytical solutions, we investigate the controllable behaviors of AB and KM soliton trains in a diffraction decreasing system with exponential profile. By adjusting the relation between the maximum Z(m) of effective propagation distance and the peak locations Z(i) of AB and KM soliton trains, we can control the restraint, maintenance and postpone excitations of AB and KM soliton trains. (C) 2014 Optical Society of America
引用
收藏
页码:29862 / 29867
页数:6
相关论文
共 16 条
[1]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[2]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[3]  
[Anonymous], 1994, Theory of Solitons in Inhomogeneous Media
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   Instabilities, solitons and rogue waves in PT-coupled nonlinear waveguides [J].
Bludov, Yu V. ;
Driben, R. ;
Konotop, V. V. ;
Malomed, B. A. .
JOURNAL OF OPTICS, 2013, 15 (06)
[6]   PT-symmetric coupler with a coupling defect: soliton interaction with exceptional point [J].
Bludov, Yuli V. ;
Hang, Chao ;
Huang, Guoxiang ;
Konotop, Vladimir V. .
OPTICS LETTERS, 2014, 39 (12) :3382-3385
[7]   TWIN CORE NONLINEAR COUPLERS WITH GAIN AND LOSS [J].
CHEN, YJ ;
SNYDER, AW ;
PAYNE, DN .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (01) :239-245
[8]   Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials [J].
Dai, Chao-Qing ;
Wang, Xiao-Gang ;
Zhou, Guo-Quan .
PHYSICAL REVIEW A, 2014, 89 (01)
[9]   Controllable optical rogue waves in the femtosecond regime [J].
Dai, Chao-Qing ;
Zhou, Guo-Quan ;
Zhang, Jie-Fang .
PHYSICAL REVIEW E, 2012, 85 (01)
[10]   Theory of coupled optical PT-symmetric structures [J].
El-Ganainy, R. ;
Makris, K. G. ;
Christodoulides, D. N. ;
Musslimani, Ziad H. .
OPTICS LETTERS, 2007, 32 (17) :2632-2634