FINITENESS RESULT FOR GENERALIZED LOCAL COHOMOLOGY MODULES

被引:1
作者
Tehranian, Abolfazl [1 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Tehran, Iran
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 02期
关键词
Local cohomology; Modules finite over a local homomorphism; Artinian module; Secondary representation; CO-HOMOLOGY; PRIMES;
D O I
10.11650/twjm/1500405800
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a Noetherian ring, let M and N be finitely generated modules and let a and b be ideals of R. Let s be an integer such that b(p) subset of root Ann H(ap)(i) (M(p), N(p)) for all i <= s and all prime ideal p of R. Then we show the following statements hold: (1) If H(b)(i) (N) = 0 for all i < s, then H(a)(i)(M, N) is finitely generated for all i <= s. (2) b subset of root Ann H(a)(2)(M, N). These statements generalize the corresponding results which are shown in [6] and [1] for standard local cohomology module.
引用
收藏
页码:447 / 451
页数:5
相关论文
共 9 条
[1]   On annihilators and associated primes of local cohomology modules [J].
Brodmann, M ;
Rotthaus, C ;
Sharp, RY .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (03) :197-227
[2]  
BRODMANN M. P., 1998, Cambridge Studies in Advanced Mathematics, V60
[3]   FINITENESS THEOREM IN LOCAL CO-HOMOLOGY [J].
FALTINGS, G .
MATHEMATISCHE ANNALEN, 1981, 255 (01) :45-56
[4]   NULLIFIERS OF LOCAL CO-HOMOLOGY GROUPS [J].
FALTINGS, G .
ARCHIV DER MATHEMATIK, 1978, 30 (05) :473-476
[5]  
HERZOG J, KOMPLEXE AUFLOSUNGEN
[6]  
Raghavan K. N., 1994, CONT MATH, V159, P329
[7]  
Suzuki N., 1978, J. Math. Kyoto. Univ., V18, P71
[8]   Associated primes of generalized local cohomology modules [J].
Yassemi, S ;
Khatami, L ;
Sharif, T .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (01) :327-330
[9]   GENERALIZED SECTION FUNCTORS [J].
YASSEMI, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 95 (01) :103-119