APT characterization and modeling of irradiation-induced Nb-rich nanoclustering in Zr-1.0%Nb alloys

被引:11
作者
Adisa, S. B. [1 ]
Hu, J. [2 ]
Swenson, M. J. [1 ]
机构
[1] Univ Idaho, 875 Perimeter Dr, Moscow, ID 83844 USA
[2] Argonne Natl Lab, 9700 Cass Ave, Lemont, IL 60439 USA
关键词
Atom probe tomography; Ion irradiation; Neutron irradiation; Irradiation-induced nanoclustering; Radiation-enhanced diffusion; ZIRCONIUM ALLOYS; NEUTRON; DAMAGE; PROTON; GROWTH; FE; TEMPERATURE; DISSOLUTION; SOLUBILITY; STABILITY;
D O I
10.1016/j.mtla.2021.101040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent development of Zr-based alloys containing Nb solutes have demonstrated promising improvements in corrosion resistance and reduced irradiation growth, particularly when irradiation-induced Nb-rich nanoclusters are present and inhibit (c) loop formation. In this study, a Zr-1.0%Nb alloy is irradiated with either Kr2+ ions or neutrons to 5 dpa at 310 degrees C. Using atom probe tomography, radiation-induced Nb-rich nanoclusters and a corresponding reduction of Nb matrix composition from 0.40 at% to 0.26 at% and 0.34 at% is characterized following each irradiation, respectively, suggesting that matrix solutes coalesce to form nanoclusters. Irradiation with Kr2+ ions induces nanoclusters that are larger and denser than those following neutron irradiation. Utilization of a simple rate-theory nanocluster evolution model demonstrates high sensitivity to the solute migration, vacancy formation, and vacancy migration energies directly influencing radiation-enhanced mobility of solutes, enabling exploration of irradiation temperature effects and potential differences in nanocluster evolution for different solutes or alloy systems.
引用
收藏
页数:9
相关论文
共 43 条
[1]  
Abriata J. P., 1982, B ALLOY PHASE DIAGR, V3, P34
[2]   Irradiation creep and growth of zirconium alloys: A critical review [J].
Adamson, Ronald B. ;
Coleman, Christopher E. ;
Griffiths, Malcolm .
JOURNAL OF NUCLEAR MATERIALS, 2019, 521 :167-244
[3]  
Allen T. R., 2012, Corrosion of zirconium alloys, DOI [10.1016/B978-0-08-056033-5.00063-X, DOI 10.1016/B978-0-08-056033-5.00063-X]
[4]  
[Anonymous], 2016, ASTM Standard E521-16
[5]   CONTRIBUTION OF DISLOCATION LOOPS TO RADIATION GROWTH AND CREEP OF ZIRCALOY-2 [J].
CARPENTER, GJC ;
NORTHWOOD, DO .
JOURNAL OF NUCLEAR MATERIALS, 1975, 56 (03) :260-266
[6]   Solubility in Zr-Nb alloys from first-principles [J].
Cottura, Maeva ;
Clouet, Emmanuel .
ACTA MATERIALIA, 2018, 144 :21-30
[7]  
Doriot S., 2005, J. ASTM Int, V2, P12332, DOI DOI 10.1520/JAI12332
[8]  
ETOH Y, 1992, J NUCL SCI TECHNOL, V29, P358, DOI [10.3327/jnst.29.358, 10.1080/18811248.1992.9731535]
[9]   Stability of β" nano-phases in Al-Mg-Si(-Cu) alloy under high dose ion irradiation [J].
Flament, Camille ;
Ribis, Joel ;
Gamier, Jerome ;
Serruys, Y. ;
Lepretre, F. ;
Gentils, A. ;
Baumier, C. ;
Descoins, M. ;
Mangelinck, D. ;
Lopez, A. ;
Colas, K. ;
Buchanan, K. ;
Donnadieu, P. ;
Deschamps, Alexis .
ACTA MATERIALIA, 2017, 128 :64-76
[10]   Effect of Nb and Fe on damage evolution in a Zr-alloy during proton and neutron irradiation [J].
Francis, E. ;
Babu, R. Prasath ;
Harte, A. ;
Martin, T. L. ;
Frankel, R. ;
Jadernas, D. ;
Romero, J. ;
Halistadius, L. ;
Bagot, P. A. J. ;
Moody, M. P. ;
Preuss, M. .
ACTA MATERIALIA, 2019, 165 :603-614