The spectrum and eigenfunctions of the two-dimensional Schrodinger operator with a magnetic field

被引:1
作者
Chuburin, YP [1 ]
机构
[1] RAS, Udmurtia Sci Ctr, Inst Physicotech, Izhevsk, Russia
关键词
Schrodinger operator; magnetic field; eigenfunction; eigenvalue;
D O I
10.1023/A:1022228120876
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove several theorems concerning the eigenfunctions and eigenvalues of the Schrodinger operator for a large constant magnetic field.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 50 条
[31]   Magnetic Schrödinger Operator with the Potential Supported in a Curved Two-Dimensional Strip [J].
Bory-Reyes, Juan ;
Barseghyan, Diana ;
Schneider, Baruch .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
[32]   Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum [J].
Birman, MS ;
Suslina, TA .
MATHEMATICAL RESULTS IN QUANTUM MECHANICS, 1999, 108 :13-31
[33]   Ordering of two-dimensional system of ferromagnetic particles in magnetic field [J].
Gorobets, SV ;
Melnichuk, IA .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 182 (1-2) :61-64
[34]   On the Essential Spectrum of Two-Dimensional Periodic Magnetic Schrödinger Operators [J].
H. D. Cornean .
Letters in Mathematical Physics, 1999, 49 :197-211
[35]   The Existence and Asymptotics of Eigenvalues of Schrodinger Operator on Two Dimensional Lattices [J].
Boltaev, A. T. ;
Almuratov, F. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) :3460-3470
[36]   The convergence of Fourier series in eigenfunctions of the Schrodinger operator with Kato potential [J].
Serov, VS .
MATHEMATICAL NOTES, 2000, 67 (5-6) :639-645
[37]   On spectrum of perturbed two-dimensional harmonic oscillator in a strip [J].
Fazullin, Ziganur ;
Nugaeva, Irina .
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
[38]   ENERGY LEVELS AND EIGENFUNCTIONS FOR TWO-DIMENSIONAL ELECTRON SYSTEMS WITH CONFINING SQUARE WELL POTENTIALS AND SPIN-ORBIT INTERACTIONS IN THE PRESENCE OF MAGNETIC FIELD [J].
Baran, A. V. ;
Kudryashov, V. V. .
UKRAINIAN JOURNAL OF PHYSICS, 2015, 60 (04) :328-333
[39]   Perturbation theory for the two-particle Schrodinger operator on a one-dimensional lattice [J].
Abdullaev, JI .
THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 145 (02) :1551-1558
[40]   THRESHOLD PHENOMENA IN THE SPECTRUM OF THE TWO-PARTICLE SCHRODINGER OPERATOR ON A LATTICE [J].
Lakaev, S. N. ;
Boltaev, A. T. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (03) :363-375