The spectrum and eigenfunctions of the two-dimensional Schrodinger operator with a magnetic field

被引:1
作者
Chuburin, YP [1 ]
机构
[1] RAS, Udmurtia Sci Ctr, Inst Physicotech, Izhevsk, Russia
关键词
Schrodinger operator; magnetic field; eigenfunction; eigenvalue;
D O I
10.1023/A:1022228120876
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove several theorems concerning the eigenfunctions and eigenvalues of the Schrodinger operator for a large constant magnetic field.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 50 条
[21]   Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf [J].
Borisov D.I. .
Journal of Mathematical Sciences, 2021, 252 (2) :135-146
[22]   On the Spectrum Discreteness for the Magnetic Schrodinger Operator on Quantum Graphs [J].
Popov, Igor Y. ;
Belolipetskaia, Anna G. .
KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (02) :249-255
[23]   Spectrum of the two-particle Schrodinger operator on a lattice [J].
Lakaev, S. N. ;
Khalkhuzhaev, A. M. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 155 (02) :754-765
[24]   Asymptotic iteration method solution of the energy spectrum of two-dimensional screened donor in a magnetic field [J].
Soylu, A. ;
Boztosun, I. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (03) :443-448
[25]   Effect of quantizing magnetic field on the spectrum and damping of polaritons in double two-dimensional electronic systems [J].
N. N. Beletskii ;
S. A. Borisenko .
Physics of the Solid State, 2000, 42 :1522-1528
[26]   Two-dimensional D --states in a longitudinal magnetic field [J].
Krevchik V.D. ;
Grunin A.B. ;
Evstifeev V.V. .
Russian Physics Journal, 2005, 48 (5) :465-470
[27]   Computations of the first eigenpairs for the Schrodinger operator with magnetic field [J].
Bonnaillie-Nooel, V. ;
Dauge, M. ;
Martin, D. ;
Vial, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3841-3858
[28]   Lifshitz tail for Schrodinger operator with random magnetic field [J].
Nakamura, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (03) :565-572
[29]   Stability of the magnetic Schrodinger operator in a waveguide [J].
Ekholm, T ;
Kovarík, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) :539-565
[30]   On the spectrum of a vector Schrodinger operator [J].
Ismagilov, R. S. ;
Kostyuchenko, A. G. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2007, 41 (01) :31-41