Evaluation of the mechanism of Rujiling capsules in the treatment of hyperplasia of mammary glands based on network pharmacology and molecular docking

被引:6
|
作者
Shi, Mili [1 ,2 ]
Ma, Yue [1 ]
Xu, Pin [1 ]
机构
[1] Kunming Med Univ, Dept Pharm, Affiliated Hosp 6, Yuxi, Yunnan, Peoples R China
[2] Kunming Med Univ, Affiliated Hosp 6, Yuxi 653100, Yunnan, Peoples R China
关键词
Hyperplasia of mammary glands; molecular docking; network pharmacology; Rujiling; CANCER STEM-CELLS; ISOLIQUIRITIGENIN; KAEMPFEROL; INDUCTION; APOPTOSIS; INHIBITION; QUERCETIN; INVASION;
D O I
10.4103/ijp.ijp_374_21
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
OBJECTIVE: The present study aimed to elucidate the molecular network mechanism of the Rujiling capsule in the treatment of hyperplasia of mammary glands through network pharmacology and molecular docking. MATERIALS AND METHODS: TCMSP and TCMID databases were screened for the active components and their action targets of the Rujiling capsule, whereas the disease targets of hyperplasia of mammary glands were searched in GeneCard and DisGeNET databases. Venny software was employed to identify the common targets of drugs and diseases. Cytoscape software was used to construct the network pharmacological diagram of "drug-active components-target " and the intersection targets were subjected to protein-protein interaction analysis by STRING platform and Cytoscape software. The DAVID database was exploited for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the intersection target. After that, the key target genes with a degree value greater than the median were verified with the active components in molecular docking. RESULTS: A total of 691 drug targets, 251 disease targets, and 108 intersection targets were obtained after retrieval and screening. Among the 686 items enriched by GO included 522 biological processes, 110 molecular functions, and 54 cellular components. At the same time, 114 signal pathways were enriched by KEGG. The results of molecular docking revealed that the docking energies of main active components and some core targets were all <-5 kcal/mol. CONCLUSION: Henceforth, highlighted the role of the Rujiling capsule in the treatment of hyperplasia of mammary glands through multiple components, multiple targets, and multiple signal pathways.
引用
收藏
页码:110 / 117
页数:8
相关论文
共 50 条
  • [11] Mechanism of icariin for the treatment of osteoarthritis based on network pharmacology and molecular docking method
    Gu, Jin-Yu
    Li, Fa-Jie
    Hou, Cheng-Zhi
    Zhang, Yue
    Bai, Zi-Xing
    Zhang, Qing
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (08): : 5071 - 5084
  • [12] Based on network pharmacology and molecular docking to predict the mechanism of TMDZ capsule in the treatment of IS
    Yang, Fengjiao
    Gu, Yun
    Yan, Ya
    Wang, Guangming
    MEDICINE, 2023, 102 (30) : E34424
  • [13] Mechanism of glycitein in the treatment of colon cancer based on network pharmacology and molecular docking
    Xiang, Tao
    Jin, Weibiao
    LIFESTYLE GENOMICS, 2023, 16 (01) : 1 - 10
  • [14] Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking
    Panpan Yang
    Yihong Chai
    Min Wei
    Yan Ge
    Feixue Xu
    Scientific Reports, 13
  • [15] The mechanism of Croci stigma in the treatment of melasma based on network pharmacology and molecular docking
    Yin, Wenxian
    Zhao, Fulan
    He, Yingmeng
    Lai, Hui
    Sun, Mengqi
    JOURNAL OF COSMETIC DERMATOLOGY, 2023, 22 (07) : 2105 - 2114
  • [16] Mechanism of Taxanes in the Treatment of Lung Cancer Based on Network Pharmacology and Molecular Docking
    Zhang, Yajing
    Zhao, Zirui
    Li, Wenlong
    Tang, Yuanhu
    Wang, Shujie
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2023, 45 (08) : 6564 - 6582
  • [17] Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking
    Yang, Panpan
    Chai, Yihong
    Wei, Min
    Ge, Yan
    Xu, Feixue
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [18] Mechanism of Radix Scutellariae in the treatment of influenza A based on network pharmacology and molecular docking
    Li, Qing
    Liu, Yuntao
    Yang, Min
    Jin, Lianshun
    Wu, Yali
    Tang, Lijuan
    He, Liuyun
    Wu, Dinghong
    Zhang, Zhongde
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (06)
  • [19] Molecular Mechanism of Qingzaojiufei Decoction in the Treatment of Pulmonary Fibrosis based on Network Pharmacology and Molecular Docking
    Zhao, Yilong
    Liu, Bohao
    Li, Yixing
    Chen, Zhe
    Zhu, Xingzhuo
    Tao, Runyi
    Wang, Zhiyu
    Wang, Hongyi
    Zhang, Yanpeng
    Yan, Shuguang
    Gong, Qiuyu
    Zhang, Guangjian
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (27) : 2161 - 2176
  • [20] Exploration of the Molecular Mechanism of Polygonati Rhizoma in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking
    Zhao, Jinlong
    Lin, Fangzheng
    Liang, Guihong
    Han, Yanhong
    Xu, Nanjun
    Pan, Jianke
    Luo, Minghui
    Yang, Weiyi
    Zeng, Lingfeng
    FRONTIERS IN ENDOCRINOLOGY, 2022, 12