Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator

被引:153
作者
Pagano, Guido [1 ,3 ,4 ,5 ]
Bapat, Aniruddha [1 ,2 ,3 ,4 ]
Becker, Patrick [1 ,2 ,3 ,4 ]
Collins, Katherine S. [1 ,2 ,3 ,4 ]
De, Arinjoy [1 ,2 ,3 ,4 ]
Hess, Paul W. [1 ,2 ,3 ,4 ,6 ]
Kaplan, Harvey B. [1 ,2 ,3 ,4 ]
Kyprianidis, Antonis [1 ,2 ,3 ,4 ]
Tan, Wen Lin [1 ,2 ,3 ,4 ]
Baldwin, Christopher [1 ,2 ,3 ,4 ]
Brady, Lucas T. [1 ,2 ,3 ]
Deshpande, Abhinav [1 ,2 ,3 ,4 ]
Liu, Fangli [1 ,2 ,3 ,4 ]
Jordan, Stephen [7 ]
Gorshkov, Alexey, V [1 ,2 ,3 ,4 ]
Monroe, Christopher [1 ,2 ,3 ,4 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[4] Univ Maryland, Phys Dept, College Pk, MD 20742 USA
[5] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[6] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[7] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
quantum information science; quantum simulation; quantum; computing; quantum algorithms; trapped ions;
D O I
10.1073/pnas.2006373117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground-state energy of the Transverse Field Ising Model with long-range interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot, individual qubit measurements. We execute the algorithm with both an exhaustive search and closed-loop optimization of the variational parameters, approximating the ground-state energy with up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward toward the application of the QAOA to more general problem instances.
引用
收藏
页码:25396 / 25401
页数:6
相关论文
共 37 条
[1]  
[Anonymous], 2019, ARXIV190210171
[2]  
[Anonymous], 2018, ARXIV181202746
[3]  
[Anonymous], 2019, ARXIV190507047
[4]  
[Anonymous], 2018, ARXIV PREPRINT ARXIV
[5]   On the complexity and verification of quantum random circuit sampling [J].
Bouland, Adam ;
Fefferman, Bill ;
Nirkhe, Chinmay ;
Vazirani, Umesh .
NATURE PHYSICS, 2019, 15 (02) :159-+
[6]   Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations [J].
Bremner, Michael J. ;
Montanaro, Ashley ;
Shepherd, Dan J. .
PHYSICAL REVIEW LETTERS, 2016, 117 (08)
[7]  
Crooks G.E., 2018, Performance of the quantum approximate optimization algorithm on the maximum cut problem
[8]   Nonperturbative calculation of phonon effects on spin squeezing [J].
Dylewsky, D. ;
Freericks, J. K. ;
Wall, M. L. ;
Rey, A. M. ;
Foss-Feig, M. .
PHYSICAL REVIEW A, 2016, 93 (01)
[9]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[10]  
Farhi E., 2000, QUANTUM COMPUTATION