Impact of mouse contamination in genomic profiling of patient-derived models and best practice for robust analysis

被引:12
作者
Jo, Se-Young [1 ,2 ]
Kim, Eunyoung [1 ,2 ]
Kim, Sangwoo [1 ,2 ]
机构
[1] Yonsei Univ, Coll Med, Dept Biomed Syst Informat, Seoul 03722, South Korea
[2] Yonsei Univ, Coll Med, Brain Korea 21 PLUS Project Med Sci, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Benchmark; Patient-derived model; Genomic analysis; Mouse contamination; Best practice; Read filtering; TUMOR XENOGRAFTS; ALGORITHMS; EXPRESSION; MUTATIONS;
D O I
10.1186/s13059-019-1849-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Patient-derived xenograft and cell line models are popular models for clinical cancer research. However, the inevitable inclusion of a mouse genome in a patient-derived model is a remaining concern in the analysis. Although multiple tools and filtering strategies have been developed to account for this, research has yet to demonstrate the exact impact of the mouse genome and the optimal use of these tools and filtering strategies in an analysis pipeline. Results We construct a benchmark dataset of 5 liver tissues from 3 mouse strains using human whole-exome sequencing kit. Next-generation sequencing reads from mouse tissues are mappable to 49% of the human genome and 409 cancer genes. In total, 1,207,556 mouse-specific alleles are aligned to the human genome reference, including 467,232 (38.7%) alleles with high sensitivity to contamination, which are pervasive causes of false cancer mutations in public databases and are signatures for predicting global contamination. Next, we assess the performance of 8 filtering methods in terms of mouse read filtration and reduction of mouse-specific alleles. All filtering tools generally perform well, although differences in algorithm strictness and efficiency of mouse allele removal are observed. Therefore, we develop a best practice pipeline that contains the estimation of contamination level, mouse read filtration, and variant filtration. Conclusions The inclusion of mouse cells in patient-derived models hinders genomic analysis and should be addressed carefully. Our suggested guidelines improve the robustness and maximize the utility of genomic analysis of these models.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers
    Bradford, James R.
    Wappett, Mark
    Beran, Garry
    Logie, Armelle
    Delpuech, Oona
    Brown, Henry
    Boros, Joanna
    Camp, Nicola J.
    McEwen, Robert
    Mazzola, Anne Marie
    D'Cruz, Celina
    Barry, Simon T.
    [J]. ONCOTARGET, 2016, 7 (15) : 20773 - 20787
  • [22] MRI radiomics captures early treatment response in patient-derived organoid endometrial cancer mouse models
    Espedal, Heidi
    Fasmer, Kristine E.
    Berg, Hege F.
    Lyngstad, Jenny M.
    Schilling, Tomke
    Krakstad, Camilla
    Haldorsen, Ingfrid S.
    [J]. FRONTIERS IN ONCOLOGY, 2024, 14
  • [23] Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts
    Wei, Lei
    Chintala, Sreenivasulu
    Ciamporcero, Eric
    Ramakrishnan, Swathi
    Elbanna, May
    Wang, Jianmin
    Hu, Qiang
    Glenn, Sean T.
    Murakami, Mitsuko
    Liu, Lu
    Gomez, Eduardo Cortes
    Sun, Yuchen
    Conroy, Jacob
    Miles, Kiersten Marie
    Malathi, Kullappan
    Ramaiah, Sudha
    Anbarasu, Anand
    Woloszynska-Read, Anna
    Johnson, Candace S.
    Conroy, Jeffrey
    Liu, Song
    Morrison, Carl D.
    Pili, Roberto
    [J]. ONCOTARGET, 2016, 7 (47) : 76374 - 76389
  • [24] Bioengineered miRNA-1291 prodrug therapy in pancreatic cancer cells and patient-derived xenograft mouse models
    Tu, Mei-Juan
    Ho, Pui Yan
    Zhang, Qian-Yu
    Jian, Chao
    Qiu, Jing-Xin
    Kim, Edward J.
    Bold, Richard J.
    Gonzalez, Frank J.
    Bi, Huichang
    Yu, Ai-Ming
    [J]. CANCER LETTERS, 2019, 442 : 82 - 90
  • [25] Impact of Tumour Hypoxia on Evofosfamide Sensitivity in Head and Neck Squamous Cell Carcinoma Patient-Derived Xenograft Models
    Harms, Julia K.
    Lee, Tet-Woo
    Wang, Tao
    Lai, Amy
    Kee, Dennis
    Chaplin, John M.
    McIvor, Nick P.
    Hunter, Francis W.
    Macann, Andrew M. J.
    Wilson, William R.
    Jamieson, Stephen M. F.
    [J]. CELLS, 2019, 8 (07)
  • [26] Trastuzumab anti-tumor efficacy in patient-derived esophageal squamous cell carcinoma xenograft (PDECX) mouse models
    Wu, Xianhua
    Zhang, Jingchuan
    Zhen, Ruheng
    Lv, Jing
    Zheng, Li
    Su, Xinying
    Zhu, Guanshan
    Gavine, Paul R.
    Xu, Songtao
    Lu, Shaohua
    Hou, Jun
    Liu, Yalan
    Xu, Chen
    Tan, Yunshan
    Xie, Liang
    Yin, Xiaolu
    He, Deming
    Ji, Qunsheng
    Hou, Yingyong
    Ge, Di
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2012, 10
  • [27] Preservation of KIT genotype in a novel pair of patient-derived orthotopic xenograft mouse models of metastatic pediatric CNS germinoma
    Lindsay, Holly
    Huang, Yulun
    Du, Yuchen
    Braun, Frank K.
    Teo, Wan Yee
    Kogiso, Mari
    Qi, Lin
    Zhang, Huiyuan
    Zhao, Sibo
    Mao, Hua
    Lin, Frank
    Baxter, Patricia
    Su, Jack M.
    Terashima, Keita
    Perlaky, Laszlo
    Chintagumpala, Murali
    Adesina, Adekunle
    Lau, Ching C.
    Parsons, D. Williams
    Li, Xiao-Nan
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2016, 128 (01) : 47 - 56
  • [28] Robust Activity of Avapritinib, Potent and Highly Selective Inhibitor of Mutated KIT, in Patient-derived Xenograft Models of Gastrointestinal Stromal Tumors
    Gebreyohannes, Yemarshet K.
    Wozniak, Agnieszka
    Zhai, Madalina-Elena
    Weliens, Jasmien
    Cornillie, Jasmien
    Vanleeuw, Ulla
    Evans, Erica
    Gardino, Alexandra K.
    Lengauer, Christoph
    Debiec-Rychter, Maria
    Sciot, Raf
    Schoffski, Patrick
    [J]. CLINICAL CANCER RESEARCH, 2019, 25 (02) : 609 - 618
  • [29] Improved phosphoproteomic analysis for phosphosignaling and active-kinome profiling in Matrigel-embedded spheroids and patient-derived organoids
    Abe, Yuichi
    Tada, Asa
    Isoyama, Junko
    Nagayama, Satoshi
    Yao, Ryoji
    Adachi, Jun
    Tomonaga, Takeshi
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [30] Representation of genomic intratumor heterogeneity in multi-region non-small cell lung cancer patient-derived xenograft models
    Hynds, Robert E.
    Huebner, Ariana
    Pearce, David R.
    Hil, Mark S.
    Akarca, Ayse U.
    Moore, David A.
    Ward, Sophia
    Gowers, Kate H. C.
    Karasaki, Takahiro
    Al Bakir, Maise
    Wilson, Gareth A.
    Pich, Oriol
    Martinez-Ruiz, Carlos
    Hossain, A. S. Md Mukarram
    Pearce, Simon P.
    Sivakumar, Monica
    Ben Aissa, Assma
    Gronroos, Eva
    Chandrasekharan, Deepak
    Kolluri, Krishna K.
    Towns, Rebecca
    Wang, Kaiwen
    Cook, Daniel E.
    Bosshard-Carter, Leticia
    Naceur-Lombardelli, Cristina
    Rowan, Andrew J.
    Veeriah, Selvaraju
    Litchfield, Kevin
    Crosbie, Philip A. J.
    Dive, Caroline
    Quezada, Sergio A.
    Janes, Sam M.
    Jamal-Hanjani, Mariam
    Marafioti, Teresa
    McGranahan, Nicholas
    Swanton, Charles
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)