Single-Image Super-Resolution via Adaptive Joint Kernel Regression

被引:2
|
作者
Huang, Chen [1 ]
Ding, Xiaoqing [1 ]
Fang, Chi [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
来源
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013 | 2013年
关键词
SPARSE REPRESENTATION; ALGORITHM;
D O I
10.5244/C.27.101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an adaptive joint kernel regression framework for single-image super-resolution (SR). The basic idea is to regularize the ill-posed reconstruction problem using a regression-based prior that exploits both local structural regularity and nonlocal self-similarity of natural images. To this end, we first generalize the nonlocal means method in the local kernel regression framework, and then extend such generalized regressors to the nonlocal range. Combining them into one single regularization term leads to a joint kernel regression scheme that simultaneously exploits both image statistics in a natural manner. We further propose a measure called regional redundancy to determine the confidence of these regression groups and thus control their relative effects of regularization adaptively. Adaptive dictionary learning and dictionary-based sparsity prior are also introduced to interact with the regression prior for robustness. Quantitative and qualitative results on SR show that our method outperforms other state-of-the-art methods, and can also be applied to other inverse problems such as image deblurring.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32
  • [22] Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression
    Zhang, Kaibing
    Gao, Xinbo
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (11) : 4544 - 4556
  • [23] Sparse representation and adaptive mixed samples regression for single image super-resolution
    Zhang, Chaopeng
    Liu, Weirong
    Liu, Jie
    Liu, Chaorong
    Shi, Changhong
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 67 : 79 - 89
  • [24] Robust Single-Image Super-Resolution Based on Adaptive Edge-Preserving Smoothing Regularization
    Huang, Shuying
    Sun, Jun
    Yang, Yong
    Fang, Yuming
    Lin, Pan
    Que, Yue
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2650 - 2663
  • [25] Single-image super-resolution via a lightweight convolutional neural network with improved shuffle learning
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Chen, Yudan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 233 - 241
  • [26] Face quality analysis of single-image super-resolution based on SIFT
    Xiao Hu
    Juan Sun
    Zhuohao Mai
    Shuyi Li
    Shaohu Peng
    Signal, Image and Video Processing, 2020, 14 : 829 - 837
  • [27] Face quality analysis of single-image super-resolution based on SIFT
    Hu, Xiao
    Sun, Juan
    Mai, Zhuohao
    Li, Shuyi
    Peng, Shaohu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (04) : 829 - 837
  • [28] The single-image super-resolution method based on the optimization of neural networks
    Duanmu, Chunjiang
    Lei, Yi
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [29] New single-image super-resolution reconstruction using MRF model
    Nayak, Rajashree
    Patra, Dipti
    NEUROCOMPUTING, 2018, 293 : 108 - 129
  • [30] Single Image Super-Resolution via Locally Regularized Anchored Neighborhood Regression and Nonlocal Means
    Jiang, Junjun
    Ma, Xiang
    Chen, Chen
    Lu, Tao
    Wang, Zhongyuan
    Ma, Jiayi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (01) : 15 - 26