High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide

被引:24
作者
Miao, BL [1 ]
Chen, CH [1 ]
Shi, SY [1 ]
Murakowski, J [1 ]
Prather, DW [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
关键词
bandwidth; finite-difference time-domain (FDTD); planar photonic crystal; waveguide bend;
D O I
10.1109/LPT.2004.834888
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present two designs to improve the transmission of a conventional double-60degrees bend in a single-line defect planar photonic crystal waveguide by locally optimizing the shape and the size of air holes of a photonic crystal lattice at the corners. We fabricate these devices on a silicon-on-insulator substrate and characterized them using tunable laser sources over a wavelength range from lambda = 1.259 mum to lambda = 1.641 mum. As we show, over a 9% bandwidth, less than 1-dB loss/bend was observed. In order to theoretically validate these experimental results, the three-dimensional finite-difference time-domain simulations are performed and found to agree with the experimental results.
引用
收藏
页码:2469 / 2471
页数:3
相关论文
共 14 条
[1]   Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals [J].
Benisty, H ;
Olivier, S ;
Weisbuch, C ;
Agio, M ;
Kafesaki, M ;
Soukoulis, CM ;
Qiu, M ;
Swillo, M ;
Karlsson, A ;
Jaskorzynska, B ;
Talneau, A ;
Moosburger, J ;
Kamp, M ;
Forchel, A ;
Ferrini, R ;
Houdré, R ;
Oesterle, U .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (07) :770-785
[2]   Topology optimization and fabrication of photonic crystal structures [J].
Borel, PI ;
Harpoth, A ;
Frandsen, LH ;
Kristensen, M ;
Shi, P ;
Jensen, JS ;
Sigmund, O .
OPTICS EXPRESS, 2004, 12 (09) :1996-2001
[3]   Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 μm wavelengths [J].
Chow, E ;
Lin, SY ;
Wendt, JR ;
Johnson, SG ;
Joannopoulos, JD .
OPTICS LETTERS, 2001, 26 (05) :286-288
[4]   Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs [J].
Chutinan, A ;
Okano, M ;
Noda, S .
APPLIED PHYSICS LETTERS, 2002, 80 (10) :1698-1700
[5]   Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends [J].
Jensen, JS ;
Sigmund, O .
APPLIED PHYSICS LETTERS, 2004, 84 (12) :2022-2024
[6]   Waveguiding in planar photonic crystals [J].
Loncar, M ;
Nedeljkovic, D ;
Doll, T ;
Vuckovic, J ;
Scherer, A ;
Pearsall, TP .
APPLIED PHYSICS LETTERS, 2000, 77 (13) :1937-1939
[7]   Methods for controlling positions of guided modes of photonic-crystal waveguides [J].
Loncar, M ;
Vuckovic, J ;
Scherer, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2001, 18 (09) :1362-1368
[8]   Improved 60° bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals [J].
Olivier, S ;
Benisty, H ;
Weisbuch, C ;
Smith, CJM ;
Krauss, TF ;
Houdré, R ;
Oesterle, U .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (07) :1198-1203
[9]   Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal [J].
Olivier, S ;
Benisty, H ;
Rattier, M ;
Weisbuch, C ;
Qiu, M ;
Karlsson, A ;
Smith, CJM ;
Houdré, R ;
Oesterle, U .
APPLIED PHYSICS LETTERS, 2001, 79 (16) :2514-2516
[10]   High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide [J].
Prather, DW ;
Murakowski, J ;
Shi, SY ;
Venkataraman, S ;
Sharkawy, A ;
Chen, CH ;
Pustai, D .
OPTICS LETTERS, 2002, 27 (18) :1601-1603