Scalable Synthesis of Hollow MoS2 Nanoparticles Modified on Porous Ni for Improved Hydrogen Evolution Reaction

被引:4
作者
Lu, Xin [1 ,2 ]
Sun, Jianzhuo [1 ,2 ]
Liu, Zhiwei [3 ]
Pan, Yu [1 ,2 ]
Li, Yang [4 ]
Zhang, Deyin [2 ]
Lin, Yingwu [2 ]
Qu, Xuanhui [2 ]
机构
[1] Univ Sci & Technol Beijing, Inst Engn Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Inst Adv Mat & Technol, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
[4] Polytech Montreal, Dept Chem Engn, Montreal, PQ H3C 3A7, Canada
基金
中国国家自然科学基金;
关键词
ACTIVE EDGE SITES; FACILE SYNTHESIS; EFFICIENT; WATER; ELECTROCATALYSTS; NANOSHEETS; PERFORMANCE; ELECTRODES; NANOWIRES; CATALYSTS;
D O I
10.1149/1945-7111/ac0063
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing an inexpensive non-noble metal catalyst is essential in the electrochemical water reduction. However, to choose the support for hydrogen-producing catalyst is still a problem that needs to be solved. Herein, we report a novel route combining powder metallurgy and hydrothermal synthesis to fabricate Ni/MoS2 catalysts for boosting the hydrogen evolution reaction performance. Powder metallurgy produces the suborbicular pores on the surface and inside Ni once the sintering temperature reaches 1000 degrees C. The hollow MoS2 nanoparticles are successfully modified on the surface of porous Ni by hydrothermal synthesis. The hollow structure of MoS2 nanoparticles provides more active sites for electrochemical reaction and the porous Ni matrix with the porosity of 16.5% exhibits higher electronic conductivity, which endows the Ni/MoS2-1000 catalyst with an excellent hydrogen evolution reaction activity. The Ni/MoS2-1000 shows a low overpotential of 229 mV at the current densities of 10 mA center dot cm(-2) with a small Tafel slope of 76 mV center dot dec(-1). This study provides guidelines on the large-scale synthesis of nanostructured electrocatalysts with porous Ni as the support.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Insertion of Platinum Nanoparticles into MoS2 Nanoflakes for Enhanced Hydrogen Evolution Reaction
    Li, Dan
    Li, Yang
    Zhang, Bowei
    Lui, Yu Hui
    Mooni, Sivaprasad
    Chen, Rongsheng
    Hu, Shan
    Ni, Hongwei
    MATERIALS, 2018, 11 (09)
  • [42] MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction
    Li, Yanguang
    Wang, Hailiang
    Xie, Liming
    Liang, Yongye
    Hong, Guosong
    Dai, Hongjie
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (19) : 7296 - 7299
  • [43] Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction
    Ghanashyam, Gyawali
    Jeong, Hae Kyung
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (01) : 120 - 127
  • [44] Revisited Catalytic Hydrogen Evolution Reaction Mechanism of MoS2
    He, Yuhao
    Chen, Xiangpeng
    Lei, Yunchao
    Liu, Yongqi
    Wang, Longlu
    NANOMATERIALS, 2023, 13 (18)
  • [45] Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction
    Hou, Dongman
    Zhou, Weijia
    Liu, Xiaojun
    Zhou, Kai
    Xie, Jian
    Li, Guoqiang
    Chen, Shaowei
    ELECTROCHIMICA ACTA, 2015, 166 : 26 - 31
  • [46] Silver nanoparticles doped MoS2 flakes as highly efficient electrocatalyst for hydrogen evolution reaction
    Mehta, Kavil
    Kumar, Prashant
    Kushawaha, Rajesh K.
    Baruah, Prahlad K.
    JOURNAL OF LASER APPLICATIONS, 2025, 37 (01)
  • [47] A simple method for synthesizing Co, P-codoped MoS2 nanoflowers as electrocatalysts to enhance hydrogen evolution reaction
    Gu, Xinxin
    Zhang, Lu
    Ma, Xiangyu
    Wang, Jialing
    Shang, Xinyue
    Wang, Zuoxiang
    Kandawa-Schulz, Martha
    Song, Wei
    Wang, Yihong
    IONICS, 2022, 28 (05) : 2337 - 2347
  • [48] Improvement of MoS2 electrocatalytic activity for hydrogen evolution reaction by ion irradiation
    Mravik, Jelena Rmus
    Milanovic, Igor
    Govedarovic, Sanja Milosevic
    Mrakovic, Ana
    Korneeva, Ekaterina
    Simatovic, Ivana Stojkovic
    Kurko, Sandra
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (98) : 38676 - 38685
  • [49] MoS2 Nanosheet Loaded with TiO2 Nanoparticles: An Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Shen, Yongzhen
    Ren, Xiaohui
    Qi, Xiang
    Zhou, Jie
    Huang, Zongyu
    Zhong, Jianxin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (13) : H1087 - H1090
  • [50] Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts
    Deng, Heng
    Zhang, Chi
    Xie, Yunchao
    Tumlin, Travis
    Giri, Lily
    Karna, Shashi P.
    Lin, Jian
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (18) : 6824 - 6830