共 50 条
Scalable Synthesis of Hollow MoS2 Nanoparticles Modified on Porous Ni for Improved Hydrogen Evolution Reaction
被引:4
|作者:
Lu, Xin
[1
,2
]
Sun, Jianzhuo
[1
,2
]
Liu, Zhiwei
[3
]
Pan, Yu
[1
,2
]
Li, Yang
[4
]
Zhang, Deyin
[2
]
Lin, Yingwu
[2
]
Qu, Xuanhui
[2
]
机构:
[1] Univ Sci & Technol Beijing, Inst Engn Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Inst Adv Mat & Technol, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
[4] Polytech Montreal, Dept Chem Engn, Montreal, PQ H3C 3A7, Canada
基金:
中国国家自然科学基金;
关键词:
ACTIVE EDGE SITES;
FACILE SYNTHESIS;
EFFICIENT;
WATER;
ELECTROCATALYSTS;
NANOSHEETS;
PERFORMANCE;
ELECTRODES;
NANOWIRES;
CATALYSTS;
D O I:
10.1149/1945-7111/ac0063
中图分类号:
O646 [电化学、电解、磁化学];
学科分类号:
081704 ;
摘要:
Developing an inexpensive non-noble metal catalyst is essential in the electrochemical water reduction. However, to choose the support for hydrogen-producing catalyst is still a problem that needs to be solved. Herein, we report a novel route combining powder metallurgy and hydrothermal synthesis to fabricate Ni/MoS2 catalysts for boosting the hydrogen evolution reaction performance. Powder metallurgy produces the suborbicular pores on the surface and inside Ni once the sintering temperature reaches 1000 degrees C. The hollow MoS2 nanoparticles are successfully modified on the surface of porous Ni by hydrothermal synthesis. The hollow structure of MoS2 nanoparticles provides more active sites for electrochemical reaction and the porous Ni matrix with the porosity of 16.5% exhibits higher electronic conductivity, which endows the Ni/MoS2-1000 catalyst with an excellent hydrogen evolution reaction activity. The Ni/MoS2-1000 shows a low overpotential of 229 mV at the current densities of 10 mA center dot cm(-2) with a small Tafel slope of 76 mV center dot dec(-1). This study provides guidelines on the large-scale synthesis of nanostructured electrocatalysts with porous Ni as the support.
引用
收藏
页数:8
相关论文