Examples of Plentiful Discrete Spectra in Infinite Spatial Cruciform Quantum Waveguides

被引:7
作者
Bakharev, Fedor L. [1 ]
Matveenko, Sergey G. [2 ,3 ]
Nazarov, Sergey A. [1 ,4 ,5 ]
机构
[1] St Petersburg State Univ, Math & Mech Fac, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
[2] St Petersburg State Univ, Chebyshev Lab, 14th Line VO,29B, St Petersburg 199178, Russia
[3] Natl Res Univ, Higher Sch Econ, Kantemirovskaya St 3A,Off 417, St Petersburg 194100, Russia
[4] St Petersburg State Polytech Univ, Polytechnicheskaya Ul 29, St Petersburg 195251, Russia
[5] RAS, Inst Problems Mech Engn, VO,Bolshoj Pr 61, St Petersburg 199178, Russia
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2017年 / 36卷 / 03期
关键词
Cruciform waveguide; multiplicity of discrete spectrum; asymptotics; localization of eigenfunctions; thin quantum lattices; ASYMPTOTIC EXPANSIONS; BOUND-STATES; EIGENFUNCTIONS; EIGENVALUES; MODES;
D O I
10.4171/ZAA/1591
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spatial cruciform quantum waveguides (the Dirichlet problem for Laplace operator) are constructed such that the total multiplicity of the discrete spectrum exceeds any preassigned number.
引用
收藏
页码:329 / 341
页数:13
相关论文
共 25 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
[2]  
[Anonymous], 1977, Differentialgleichungen: Losungsmethoden und losungen, i, gewohnliche differentialgleichungen
[3]  
Babich V., 1991, Short-Wavelength Diffraction Theory
[4]  
Bakharev F. L., 2015, DOKL AKAD NAUK, V463, P650
[5]  
Bakharev F. L., 2015, MATH J, V463, P650
[6]   Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin planar domains [J].
Borisov, Denis ;
Freitas, Pedro .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02) :547-560
[7]   Water-waves modes trapped in a canal by a near-surface rough body [J].
Cardone, Giuseppe ;
Durante, Tiziana ;
Nazarov, Sergey A. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (12) :983-1004
[8]   CURVATURE-INDUCED BOUND-STATES IN QUANTUM WAVE-GUIDES IN 2-DIMENSIONS AND 3-DIMENSIONS [J].
DUCLOS, P ;
EXNER, P .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (01) :73-102
[9]   EXISTENCE THEOREMS FOR TRAPPED MODES [J].
EVANS, DV ;
LEVITIN, M ;
VASSILIEV, D .
JOURNAL OF FLUID MECHANICS, 1994, 261 :21-31
[10]   Bound states and scattering in quantum waveguides coupled laterally through a boundary window [J].
Exner, P ;
Seba, P ;
Tater, M ;
Vanek, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (10) :4867-4887