Minimization of convex functionals over frame operators

被引:21
作者
Massey, Pedro [1 ,2 ]
Ruiz, Mariano [1 ]
机构
[1] Univ Nacl La Plata, Dept Matemat, La Plata, Buenos Aires, Argentina
[2] IAM CONICET, RA-1083 Buenos Aires, DF, Argentina
关键词
Frames; Frame potential; Majorization; TIGHT FRAMES; SEQUENCES;
D O I
10.1007/s10444-008-9092-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one.
引用
收藏
页码:131 / 153
页数:23
相关论文
共 16 条
[1]  
ALBERTI PM, 1981, MATH MONOGRAPHIEN, V18, P123
[2]  
Ando T., 1982, MAJORIZATION DOUBLY
[3]   The schur-horn theorem for operators and frames with prescribed norms and frame operator [J].
Antezana, J. ;
Massey, P. ;
Ruiz, M. ;
Stojanoff, D. .
ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) :537-560
[4]   Finite normalized tight frames [J].
Benedetto, JJ ;
Fickus, M .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :357-385
[5]  
Bhatia Rajendra, 1997, Matrix Analysis: Graduate Texts in Mathematics, V169
[6]  
Casazza PG, 2006, APPL NUM HARM ANAL, P51
[7]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[8]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[9]   Convolutional frames and the frame potential [J].
Fickus, M ;
Johnson, BD ;
Kornelson, K ;
Okoudjou, KA .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) :77-91
[10]  
Horn R.A., 2012, Matrix Analysis