ON THE SOLVABILITY OF INITIAL-BOUNDARY VALUE PROBLEMS FOR A VISCOUS COMPRESSIBLE FLUID IN AN INFINITE TIME INTERVAL

被引:0
作者
Solonnikov, V. A. [1 ]
机构
[1] Russian Acad Sci, St Petersburg Branch, VA Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
关键词
Navier-Stokes equations; viscosity; anisotropic Sobolev-Slobodetski spaces; SURFACE; MOTION; FLOW;
D O I
10.1090/spmj/1402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solution of the first boundary-value problem for the Navier-Stokes equations is estimated in the case of a compressible fluid in an infinite time interval; the solvability of the problem is proved, together with the exponential decay of the solution as t -> infinity. The proof is based on the "free work" method due to Prof. M. Padula. It is shown that the method is applicable to the analysis of free boundary problems.
引用
收藏
页码:523 / 546
页数:24
相关论文
共 20 条
[11]   INITIAL VALUE-PROBLEM FOR THE EQUATIONS OF MOTION OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS [J].
MATSUMURA, A ;
NISHIDA, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1979, 55 (09) :337-342
[12]   On the Exponential Stability of the Rest State of a Viscous Compressible Fluid [J].
Padula, Mariarosaria .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (01) :62-77
[13]   Topics in Fluid Mechanics [J].
Padula, Mariarosaria .
ASYMPTOTIC STABILITY OF STEADY COMPRESSIBLE FLUIDS, 2011, 2024 :1-52
[14]  
Smirnov V. I., 1953, COURSE HIGHER MATH, VIV
[15]  
SOLONNIKOV VA, 1991, CONSTANTIN CARATHEOD, V2, P1270
[16]  
Solonnikov V, 2008, INT MAT SER, V7, P189, DOI 10.1007/978-0-387-75219-8_5
[17]   ABOUT THE RESOLVENT OF AN OPERATOR FROM FLUID-DYNAMICS [J].
STROHMER, G .
MATHEMATISCHE ZEITSCHRIFT, 1987, 194 (02) :183-191
[18]   ABOUT COMPRESSIBLE VISCOUS-FLUID FLOW IN A BOUNDED REGION [J].
STROHMER, G .
PACIFIC JOURNAL OF MATHEMATICS, 1990, 143 (02) :359-375
[20]  
Zajaczkowski WM, 1993, DISS MATH, V324, P1