ON THE SOLVABILITY OF INITIAL-BOUNDARY VALUE PROBLEMS FOR A VISCOUS COMPRESSIBLE FLUID IN AN INFINITE TIME INTERVAL

被引:0
作者
Solonnikov, V. A. [1 ]
机构
[1] Russian Acad Sci, St Petersburg Branch, VA Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
关键词
Navier-Stokes equations; viscosity; anisotropic Sobolev-Slobodetski spaces; SURFACE; MOTION; FLOW;
D O I
10.1090/spmj/1402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solution of the first boundary-value problem for the Navier-Stokes equations is estimated in the case of a compressible fluid in an infinite time interval; the solvability of the problem is proved, together with the exponential decay of the solution as t -> infinity. The proof is based on the "free work" method due to Prof. M. Padula. It is shown that the method is applicable to the analysis of free boundary problems.
引用
收藏
页码:523 / 546
页数:24
相关论文
共 20 条
[1]  
Agranovic M. S., 1964, USP MAT NAUK, V19, P53
[2]  
[Anonymous], 1976, Zapiski Nauchn. Sem. LOMI
[3]  
Bogovskii ME., 1980, T SEM SL SOBOLEY, P5
[4]   Global L2-solvability of a problem governing two-phase fluid motion without surface tension [J].
Denisova, Irina V. .
PORTUGALIAE MATHEMATICA, 2014, 71 (01) :1-24
[5]   On Energy Inequality for the Problem on the Evolution of Two Fluids of Different Types Without Surface Tension [J].
Denisova, Irina Vlad .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (01) :183-198
[6]   On the R-Sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow [J].
Enomoto, Yuko ;
Shibata, Yoshihiro .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (03) :441-505
[7]  
Frolova EV., 2014, Zap. Nauchn. Sem. POMI, V425, P149
[8]  
Galdi L. P., 1994, SPRINGER TRACTS NAT, V1
[9]  
Golovkin KK., 1962, Trudy Mat. Inst. Stekolva, V66, P364
[10]   INITIAL BOUNDARY-VALUE-PROBLEMS FOR THE EQUATIONS OF MOTION OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS [J].
MATSUMURA, A ;
NISHIDA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (04) :445-464